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Abstract

We consider a flexible price continuous-time DSGE model of a closed economy popu-
lated by heterogeneous households subject to uninsurable idiosyncratic income risk and
aggregate TFP shocks. The economy produces a variety of imperfectly substitutable final
goods. Ourmain innovation is a rich representation of household consumption and saving
behavior allowing for a time-varying elasticity of substitution across varieties. Specfically,
we consider a utility function displaying Increasing Elasticity of Substitution (IES). We
provide a convenient approach to handle the complex dynamic programming problem
implied by income heterogeneity, aggregate shocks and non-homothetic preferences. We
show that IES preferences help to replicate important features of the wealth distribution
observed in the data together with a plausible macroeconomic dynamics.

1 Introduction
This paper unbundles two building blocks of traditional macroeconomic models, the rep-
resentative agent and preferences, with the goal of studying the role of demand for wealth
distribution and the business cycle. We introduce a general class of additive separable non-
homothetic preferences over differentiated goods in an otherwise standard incomplete mar-
ket (SIM) heterogeneous agents (HA) model, featuring both idiosyncratic (income) and ag-
gregate (TFP) shocks, as in Krusell and Smith (1998). Specifically, we consider preferences
with increasing elasticity of substitution (IES) over differentiated goods. The combination
of heterogeneity and non-homotheticity opens the way to a rich demand system, whereby
optimal consumption (and saving) policies depend on novel mechanisms of intertemporal
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substitution varying across the population. We argue that these mechanisms help to replicate
important features of the wealth distribution observed in the data together with a plausible
macroeconomic dynamics.

As is well-known, homothetic preferences imply an income elasticity of demand equal to
one, and a marginal propensity to consume (MPC) out of disposable income that is indepen-
dent of the level of income. These features stand in contrast to evidence based on consumers’
behavior. In particular, we do not observe an income elasticity of demand equal to one in the
data, while both the demand elasticity and the MPC vary with the level of income (Attanasio
and Browning (1995a)). Typically, individuals experiencing income decreases have a higher
propensity to consume compared to individuals experiencing income increases (Attanasio
and Weber (2010)), while the rich have a lower MPC compared to the poor. These facts have
important consequences for the general equilibrium of the economy. On the one side, the spe-
cific conditions faced by each consumer, like his own income risk, induce different reactions
to aggregate conditions across the population. On the other side, individual demand itself
varies in response to aggregate conditions. To assess the role played by heterogeneity versus
preferences, we compare the performance of our benchmark model with alternatives consid-
ering either homothetic preferences under idiosyncratic income risk or a representative agent
with non-homothetic preferences.

The paper makes two contributions. First, it shows that a more general demand system
is able to capture important features of the wealth distribution that are observed in the data,
while providing an empirically plausible macroeconomic dynamics. Specifically, our bench-
mark model with IES preferences replicates the negligible share of wealth held at the bottom
of the wealth distribution, its fat upper tail (though not as fat as in the data) and the counter-
ciclicality of standard measures of wealth inequality, together with reasonable moments for
aggregate output, consumption, investment and employment.

The benchmarkmodel fares advantageously compared to the variant displaying a constant
demand elasticity (homothetic preferences) in terms of both wealth and macroeconomic per-
formance. In fact, the incentives brought about by variation in demand elasticity lead the
consumption (and saving) profiles of less wealthy agents further apart from those of the rich.
In order to see why, consider a cyclical downturn (a low TFP state, in our framework). In
our imperfectly competitive economy, temporarily low demand elasticity and high markups
imply a strong incentive to substitute current consumption with future consumption (and
increase saving). The incentive, however, varies across the population. It is weaker for less
wealthy agents and unemployed, who devote a larger share of their income to consumption
(i.e., have higher MPC) but have a lower elasticity of intertemporal substitution (EIS). The
result is a more skewed distribution of wealth compared to the standard model with constant
elasticity. In addition, the skewness increases during cyclical downturns as is observed in
the data.1 The share of wealth held by the bottom 5 percent reduces while the share held by
the top 5 percent increases, reflecting differences in the elasticity of asset demand between
the rich and the poor. This heterogeneity in intertemporal substitution motives disappears
when preferences are homothetic and the elasticity of intertemporal substitution is constant

1Maestri and Roventini (2012) show that almost all inequality series in OECD countries are countercyclical
at business cycle frequencies. The countercyclicality of income inequality is a stylized fact (e.g., Heathcote et al.
(2010)).
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(at unity) for both the rich and the poor. Consumption smoothing is entirely driven by inter-
est rate movements in this case: low interest rates in recessions curb the incentive to save in
equal manner for the rich and the poor, and their respective shares of wealth will reduce. The
notion that less wealthy agents have a more inelastic asset demand compared to the wealthy
resonates well with evidence showing that less wealthy nonstockholders have a lower elastic-
ity of intertemporal substitution relative to wealthy stockholders (e.g., Guvenen (2006)).

Interestingly, the ability to capture key features of the wealth distribution comes with ad-
vantages also in terms of macroeconomic dynamics. The benchmarkmodel outperforms both
the alternative with homothetic preferences and the economywith a representative agent and
IES preferences in replicating the volatility, ciclicality and persistence of consumption, output,
employment and investments. The reason is that aggregate variables average the policies at
the extremes of the wealth distribution, where most of the mass is concentrated. Consump-
tion fluctuations reflect to a large extent the behaviour of less wealthy agents, who have high
MPC (though not as high as in the data) and lowEIS. Capital and investments fluctuations, on
the other hand, are mainly driven by wealthy agents (who own a large share of all the wealth
in the economy), and reflect the high elasticity of intertemporal substitution of this group. In
the model with homothetic preferences, on the contrary, the policies at the extremes of the
distribution are less diverse, concern a smaller mass of individuals and the EIS and MPC are
constant.

The second contribution is methodological. In heterogeneous agent models featuring ag-
gregate shocks, households should in principle keep track of the entire distribution of capi-
tal to plan their future consumption-saving path. Tractability has motivated the adoption of
notions of approximate rational expectations equilibria, where agents consider selected mo-
ments of the distribution as sufficient statristics, and form specific conjectures about their
evolution. In their seminal paper, Krusell and Smith (1998) proposed that only expectation
about the mean of the distribution be relevant for agents, who disregard their forecast errors.
Unfortunately, the mean is not a deterministic process in equilibrium, by the very presence of
aggregate shocks, therefore conjectures are systematicallywrong and themodel lacks internal
consistency. We use an equilibrium à la Krusell and Smith (1998), where agents focus on a
specific model of equilibrium prices, allowed to evolve in a random fashion, thus bypassing
problems of internal consistency. We then adapt the same fixed point simulation, where the
continuous-time set-up helps speed up the implementation.

The paper speaks to different strands of a vast literature at the intersection of inequality,
consumption theory and macroeconomics.2 It provides a demand system characterized by a
variable demand elasticity, in which both the intratemporal and the intertemporal substitu-
tion increase with the level of consumption. Several studies have considered non-homothetic
preferences in the context of the SIM model for their ability to exhibit (heterogeneous) pre-
cautionarymotives. The seminal contribution of DeNardi (2004), for instance, treats bequests
as a luxury good (i.e., with lower elasticity compared to normal goods) to capture the notion
that rich agents save a larger fraction of their income.3 Mankiw (1986) exploits the variability
of precautionary savings in the face of countercyclical earning risks to explain the equity pre-

2Recent surveys and books include, among others, Bertola et al. (2005); Heathcote et al. (2009); Guvenen
(2011); Quadrini and Ríos-Rull (2015); Attanasio and Pistaferri (2016); Benhabib et al. (2019).

3Subsequent studies have considered non-homothetic bequests as well as non-homotheticity of consumption
over an agent’s life time Straub (2019).
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mium puzzle (in this vein see, among others, Constantinides and Duffie (1996)). It is by now
well-understood that non-homothetic preferences generate non-linear consumption policies
and imply substantial deviations from the permanent income hypothesis. Our more modest
contribution is to clarify how these polices affect the wealth distribution and the business cy-
cle in a context with imperfectly competitive markets. We show that markup variability has
heterogeneous effects on agents’ optimal policies depending on their wealth and employment
status. This has a substantial impact on the quantitative performance of the model.

From a methodological standpoint, our paper is related to Fernández-Villaverde et al.
(2022). They investigate the effect of financial frictions on the distribution of wealth in a
continuous-time HA economy, implementing a Krusell and Smith (1998) equilibrium where
the dynamics of state variables – as conjectured by agents – features fully nonlinear drifts.
Their hypothesis is more general than ours – in that agents’ expectations are very model-
agnostic – yet more restrictive, because agents do not factor in any forecast error, thus inher-
iting the internal inconsistency problem of Krusell and Smith (1998).4

The rest of the paper is organized as follows. Section 2 illustrates the model, Sections A
and B provide our solution approach, first in the steady-state, then in the full model. diamo
un’intuizione della soluzione e dettagli e SS in appendice? Section 4 reports on the em-
pirical estimation exercise, and in Section 5 we discuss the propagation of shocks concerning
individual policies and the wealth distribution, through the lens of comparative statics and
impulse-response functions. Section 6 concludes.

2 Model
We consider a variant of the standard incomplete market model à la Krusell and Smith (1998)
with imperfectly competitive goods markets and preferences exhibiting a time-varying elas-
ticity of substitution across varieties (the elasticity of intratemporal substitution) and over
time (the elasticity of intertemporal substitution). The demand structure draws on Cavallari
(2022).

2.1 Intermediate Good Production
An intermediate good is produced by a perfectly competitive sector, which rents aggregate
capital𝐾𝑡 at an instantaneous rental rate 𝑟𝑡, and employs aggregate labor 𝐿𝑡 at an instantaneous
wage 𝑤𝑡. The output rate (per unit of time) 𝑌𝑡 is modeled by a Cobb-Douglas production
function with total factor productivity exp(𝑎𝑡):

𝑌𝑡 = exp(𝑎𝑡)𝐾𝛼
𝑡 𝐿1−𝛼

𝑡 (1)

4In Fernández-Villaverde et al. (2022) the dynamics of aggregate moments have no diffusion component.
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where 𝛼 is the constant capital share. The random evolution of the log-TFP 𝑎𝑡 is described by
a continuous-time Markov Chain with 𝑛𝑎 states and 𝑛𝑎 × 𝑛𝑎 constant intensity matrix Λ𝑎:

Λ𝑎 =
⎡
⎢
⎢
⎣

− ∑𝑖≠1 𝜆𝑎
1𝑖 𝜆𝑎

12 … 𝜆𝑎
1𝑛𝑎

⋮ ⋮ ⋮ ⋮
𝜆𝑎

𝑛𝑎1 𝜆𝑎
𝑛𝑎2 … − ∑𝑖≠𝑛𝑎

𝜆𝑎
𝑛𝑎𝑖

⎤
⎥
⎥
⎦

(2)

with 𝜆𝑎
𝑖𝑗 denoting the instantaneous intensity of a transition from state 𝑖 to state 𝑗. This choice,

while computationally convenient, entails little loss of generality relative to the common as-
sumption of a mean-reverting process such as the Ornstein-Uhlenbeck’s.5

Markets for production factors are perfectly competitive, therefore factor rewards are pinned
down by their marginal productivity:

𝑤𝑡 = (1 − 𝛼)𝑒𝑎𝑡(𝐾𝑡/𝐿𝑡)𝛼 (3)
𝑟𝑡 = 𝛼𝑒𝑎𝑡(𝐾𝑡/𝐿𝑡)𝛼−1 (4)

As detailed below, the intermediate good can be consumed or invested by the households
in a capital accumulation process, or used as production factor in a linear technology, to pro-
duce a variety of final consumption goods.

2.2 Households
The economy is populated by a continuum of households, whose measure is normalized
to one.6 Households face idiosyncratic, uninsurable labor productivity and time-preference
shocks. The former is modeled bymeans of a binary continuous-timeMarkov chain 𝜀𝑡, taking
values 𝜀𝑡 = 1 (employed) and 𝜀𝑡 = 0 (unemployed). The constant 2×2 intensity matrix of this
process is Λ𝜀, with 𝜆𝜀

𝑖𝑗 denoting transition intensities. Tomodel time-preference shocks, we al-
low the subjective discount rate 𝛽𝑡 to follow a continuous-timeMarkov chainwith three states,
with constant 3 × 3 intensity matrix Λ𝛽 and transition intensities 𝜆𝛽

𝑖𝑗. Similarly to Krusell and
Smith (1998), the purpose of time-preference shocks is to match the features of the empirical
wealth distribution.

Households have homogeneous preferences over labor services 𝑙𝑡 and a (measure one)
continuum of final goods. In particular, 𝑢(𝑐𝑗,𝑡) is the subutility of consumption 𝑐𝑗,𝑡 of the
final good 𝑗, while we assume a logarithmic felicity function acting on a linear aggregator of
subutilities.

Households can self-insure against idiosyncratic preference and labor productivity shocks
by investing their savings in a capital accumulation technology. Each household is uniquely
identified by capital (or wealth) holding 𝑘𝑡, its employment state 𝜀𝑡 and time-preference state
𝛽𝑡. Letting 𝑝𝑗,𝑡 denote the price of a generic final good 𝑗, and Γ𝑡 = (𝑟𝑡, 𝑤𝑡, 𝑝𝑗,𝑡) the vector of

5Indeed, in what follows we calibrate the states and the intensity matrix of our Markov Chain to match the
properties of the steady state distribution of the Ornstein–Uhlenbeck process

𝑑𝑎𝑡 = −𝜂𝑎𝑎𝑡 𝑑𝑡 + 𝜎𝑎𝑑𝑍𝑡

fitted to US TFP data.
6Henceforth we drop the household index where no confusion may arise.

5



endogenous state-variables,7 agents solve the following consumption-savings program:

𝑉(𝑘𝑡, 𝜀𝑡, 𝛽𝑡, Γ𝑡) = sup
𝑙𝑡≥0,𝑐𝑗,𝑡

𝔼
⎡⎢⎢
⎣
∫

∞

𝑡
𝑒− ∫𝑠

𝑡 𝛽𝑢 𝑑𝑢 ⎛⎜⎜⎜
⎝
log(∫

1

0
𝑢(𝑐𝑗,𝑠) 𝑑𝑗) − 𝑣 𝑙1+ 1

𝜑
𝑠

1 + 1
𝜑

⎞⎟⎟⎟
⎠

𝑑𝑠
⎤⎥⎥
⎦

(5)

subject to the budget constraint:

𝑑𝑘𝑡 = [𝑘𝑡(𝑟𝑡 − 𝛿) + 𝑤𝑡𝑙𝑡𝜀𝑡 − ∫
1

0
𝑝𝑗,𝑡𝑐𝑗,𝑡 𝑑𝑗 + Π𝑡] 𝑑𝑡 (6)

𝑘𝑡 ≥ 𝑘 (7)

In expression (5) 𝜑 is the Frisch elasticity of labor supply and 𝑣 a scale parameter on the labor
supply disutility. In (6), 𝛿 denotes the capital depreciation rate, and Π𝑡 is the fraction of final
goods sector’s profits (to be detailed below) distributed to the individual households. The
problem is state-constrained, in that we impose a lower capital bound 𝑘. Households solve
their program taking the equilibrium dynamics of Γ𝑡 and Π𝑡 as given, and face the net-worth
constraint (7). The optimal decision rules for the consumption rate 𝑐𝑗(𝑘𝑡, 𝜀𝑡, 𝛽𝑡, Γ𝑡) and labor
supply 𝑙(𝑘𝑡, 1, 𝛽𝑡, Γ𝑡) imply an optimal drift for the capital process (6), which we denote by
𝑠(𝑘𝑡, 𝜀𝑡, 𝛽𝑡, Γ𝑡):

𝑠(𝑘𝑡, 𝜀𝑡, 𝛽𝑡, Γ𝑡) = 𝑘𝑡(𝑟𝑡 − 𝛿) + 𝑤𝑡𝑙(𝑘𝑡, 𝜀𝑡, 𝛽𝑡, Γ𝑡)𝜀𝑡 − ∫
1

0
𝑝𝑗,𝑡𝑐𝑗(𝑘𝑡, 𝜀𝑡, 𝛽𝑡, Γ𝑡) 𝑑𝑗 + Π𝑡 (8)

2.3 Final Good Production
Each final good variety is produced by amonopolistically competitive firm using a linear tech-
nology, with a unitary marginal cost. At each time instant, this firm aggregates the demand
for good 𝑗 across households and solves the intratemporal profit maximization problem:

max𝑝𝑗,𝑡
Π𝑗,𝑡 ∶= (𝑝𝑗,𝑡 − 1) ∫

1

0
𝑐𝑖
𝑗,𝑡(𝑝𝑗,𝑡) 𝑑𝑖 (9)

where the index 𝑖 denotes the individual household. Notice that we have emphasized the
dependence of the optimal demand on price. As we show in the next sections, households’
optimization implies the following first order condition:

𝑢′(𝑐𝑖
𝑗,𝑡)

∫1
0 𝑢(𝑐𝑖

𝑢,𝑡) 𝑑𝑢
= 𝜆𝑖

𝑡𝑝𝑗,𝑡 (10)

with 𝜆𝑡 denoting a costate variable. This implies that

𝑐𝑖(𝑝𝑗,𝑡) = ℎ (𝑝𝑗,𝑡𝜆𝑖
𝑡 ∫

1

0
𝑢(𝑐𝑖

𝑗,𝑡) 𝑑𝑗) , ℎ( ⋅ ) = (𝑢′)−1( ⋅ ), (11)

7Γ𝑡 is in principle infinite dimensional, as it includes the continuum of final good prices. Since our equilib-
rium will be symmetric over final goods, the abuse of notation has little consequence.
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where the function ℎ( ⋅ ) is the inverse marginal subutility. Using this expression, the first
order condition of the price setting problem (9) reads:

∫ 𝑐𝑖(𝑝𝑗,𝑡) 𝑑𝑖 + (𝑝𝑗,𝑡 − 1) ∫
𝜆𝑖

𝑡 ∫1
0 𝑢(𝑐𝑖

𝑢,𝑡) 𝑑𝑢
𝑢″(𝑐𝑖

𝑠,𝑡)
𝑑𝑖 = 0

After using (10) to set 𝜆𝑖
𝑡 ∫1

0 𝑢(𝑐𝑖
𝑢,𝑡) 𝑑𝑢 = 𝑢′(𝑐𝑖

𝑗,𝑡)/𝑝𝑗,𝑡, we obtain the optimal price:

𝑝∗
𝑗,𝑡 = 1

1 − 𝜗𝑡
, 𝜗𝑡 = −

∫ 𝑐𝑖
𝑗,𝑡 𝑑𝑖

∫
𝑢′(𝑐𝑖

𝑗,𝑡)
𝑢″(𝑐𝑖

𝑗,𝑡)
𝑑𝑖

(12)

The optimal mark-up 𝑚𝑡 = 𝜗𝑡/(1 − 𝜗𝑡) is reminiscent of the expressions typically derived in
a representative agent context, however with household heterogeneity the expression 1/𝜗𝑡 is
interpreted as an aggregate elasticity of intratemporal substitution, as we clarify in the next
section.

2.4 IES preferences
The traditional choice in themacroeconomics literature for the subutility index 𝑢( ⋅ ) is a power
form such as 𝑢(𝑐) = 𝑐1−1/𝜃

1−1/𝜃 , with 𝜃 > 1. This delivers “log-CES” homothetic preferences where
𝜃 can be interpreted as the intratemporal elasticity of substitution between goods while the
intertemporal elasticity is unitary (due to the logarithmic transformation of the consumption
index). With this choice, optimal prices and markups in expression (12) become constant,
since 𝜗𝑡 = 1/𝜃.

Instead, we opt for the following specification of the subutility:

𝑢(𝑐) = 𝛾𝑐 + 𝑐1− 1
𝜃

1 − 1
𝜃

, 𝜃 > 1, 𝛾 > 0 (13)

This is the IES (or Increasing Elasticity of Substitution) utility specification introduced in
Bertoletti and Etro (2016). As its name suggests, it implies an intratemporal elasticity of sub-
stitution between varieties which is increasing in consumption, at the single agent level:

−
𝜕 ln (𝑐𝑖/𝑐𝑗)

𝜕 ln 𝑝𝑖
= − ⎛⎜⎜

⎝

𝜕 ln (𝑝𝑖/𝑝𝑗)
𝜕 ln 𝑐𝑖

⎞⎟⎟
⎠

−1

= − 𝑢′(𝑐)
𝑢″(𝑐)𝑐 = 𝜃 (1 + 𝛾𝑐

1
𝜃 ) , (14)

where we have evaluated the expression under the symmetry hypothesis (𝑐𝑖 = 𝑐𝑗 = 𝑐), which
will be the case of interest. The intertemporal elasticity of substitution for a single agent can be
defined as:

−𝜕 ln (𝑐)
𝜕 ln 𝑝 = 1

−𝑢″(𝑐)𝑐
𝑢′(𝑐) + 𝑢′(𝑐)𝑐

𝑢(𝑐)
(15)

7



Substituting this utility specification in the optimal pricing rule of expression (12), we obtain:

𝜗𝑡 =
∫ 𝑐𝑖

𝑡 𝑑𝑖

∫ 𝜃𝑐𝑖
𝑡 (1 + 𝛾(𝑐𝑖

𝑡)
1
𝜃 ) 𝑑𝑖

(16)

The assumptions 𝜃 > 1 and 𝛾 > 0 guarantee that the markup 𝑚𝑡 is uniformly positive (i.e.
𝑝∗

𝑡 > 1). Importantly, with 𝛾 > 0, it is also easy to show that the markup is countercyclical,
in that a reduction in consumption across the population increases it. By analogy with the
single-agent case discussed in Cavallari and Etro (2020), we define an ‘aggregate’ elasticity of
intratemporal substitution as 𝜖𝑡 = 1/𝜗𝑡, and an ‘aggregate’ elasticity of intertemporal substitution
as

𝜒𝑡 = 1
𝜖𝑡 + 𝜄𝑡

, 𝜄𝑡 =
∫ 𝑐𝑖

𝑡 𝑑𝑖

∫
𝑢(𝑐𝑖

𝑡)
𝑢′(𝑐𝑖

𝑡)
𝑑𝑖

(17)

While an increase in consumption across the population always augments 𝜖𝑡, provided 𝜃 > 1
and 𝛾 > 0, the effect on 𝜒𝑡 is ambiguous from a theoretical standpoint. In our empirical
application, though, 𝜒𝑡 will turn out to be procyclical, with important ramifications for the
properties of the wealth distribution in the economy.

2.5 Equilibrium
Let 𝐺𝑡(𝑘, 𝜀, 𝛽; Γ𝑡) denote the joint distribution of the household population over capital, labor
productivity and time-preference states, and let 𝑔𝑡(𝑘, 𝜀, 𝛽; Γ𝑡) denote its density in the capital
dimension. A symmetric (relative to consumption varieties) equilibrium in this economy is
defined as a path for individual household decisions {𝑘𝑡, 𝑐𝑡, 𝑙𝑡}𝑡≥0, input and consumption-
good prices {𝑟𝑡, 𝑤𝑡, 𝑝∗

𝑡 }𝑡≥0 and densities {𝑔𝑡}𝑡≥0 such that, at every 𝑡:

1. Households decisions are optimal policies of the consumption-saving problem (5), tak-
ing as given equilibrium prices Γ𝑡 = (𝑟𝑡, 𝑤𝑡, 𝑝∗

𝑡 )

2. The sequence of densities satisfies aggregate consistency conditions

3. Equilibrium prices Γ𝑡 = (𝑟𝑡, 𝑤𝑡, 𝑝∗
𝑡 ) satisfy (4), (3), and

𝑝∗
𝑡 = 1

1 − 𝜗𝑡
, 𝜗𝑡 = −

∑
𝜀=0,1

∑
𝛽=1,2,3

∫ 𝑐(𝑘, 𝜀, 𝛽, Γ𝑡)𝑔𝑡(𝑘, 𝜀, 𝛽; Γ𝑡) 𝑑𝑘

∑
𝜀=0,1

∑
𝛽=1,2,3

∫ 𝑢′(𝑐(𝑘, 𝜀, 𝛽, Γ𝑡))
𝑢″(𝑐(𝑘, 𝜀, 𝛽, Γ𝑡))𝑔𝑡(𝑘, 𝜀, 𝛽; Γ𝑡) 𝑑𝑘

, (18)

respectively, where 𝑢( ⋅ ) is given by (13).

4. Markets for capital and labor clear:

𝐾𝑡 = ∑
𝜀=0,1

∑
𝛽=1,2,3

∫ 𝑘 𝑔𝑡(𝑘, 𝜀, 𝛽; Γ𝑡) 𝑑𝑘 (19)

𝐿𝑡 = ∑
𝛽=1,2,3

∫ 𝑙(𝑘, 1, 𝛽, Γ𝑡) 𝑔𝑡(𝑘, 1, 𝛽; Γ𝑡) 𝑑𝑘 (20)
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Notice that the last condition implies clearing of the goods market, since aggregating the bud-
get constraint (6) across households we obtain:

∫ 𝑑𝑘𝑡
𝑑𝑡 𝑑𝐺𝑡 = (𝑟𝑡 − 𝛿)𝐾𝑡 + 𝑤𝑡𝐿𝑡 − 𝑝∗

𝑡 ∫ 𝑐 𝑑𝐺𝑡 + ∫ Π𝑡 𝑑𝐺𝑡 (21)

where we have dropped functional arguments for ease of notation. Defining aggregate in-
vestment (including depreciation) 𝐼𝑡 = ∫ 𝑑𝑘𝑡

𝑑𝑡 𝑑𝐺𝑡 + 𝛿𝐾𝑡, aggregate consumption 𝐶𝑡 = ∫ 𝑐 𝑑𝐺𝑡,
using factor prices (4) and (3), and noting that aggregate profits of the final goods sector are
∫ Π𝑡 𝑑𝐺𝑡 = (𝑝∗

𝑡 − 1)𝐶𝑡, we obtain the goods market-clearing condition:

𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 (22)

3 Solution Approach
In equilibrium, factor and consumption-good prices (𝑟𝑡, 𝑤𝑡, 𝑝∗

𝑡 ) are stochastic process, the dy-
namics of which depend on the evolution of the whole distribution 𝐺𝑡(𝑘, 𝜀, 𝛽; Γ𝑡), through the
market-clearing conditions (4), (3), and (18). From the household standpoint, the implica-
tion is that the distribution becomes a state variable for the individual consumption-saving
problem. The challenge of tracking the evolution of an infinite-dimensional object has moti-
vated Krusell and Smith (1998) to propose a notion of equilibriumwith ‘bounded rationality’,
whereby agents consider only a few selected moments (typically the first) of the distribution
as state variables, and conjecture a dynamic equation for their evolution in time. A simulation
procedure iterates on the model’s parameters until a fixed point is attained.

We follow the same idea of selecting a particular, boundedly rational equilibrium, by as-
suming that agents conjecture dynamics of few specific variables which depend on collective
behavior. Prices – Γ𝑡 = (𝑟𝑡, 𝑤𝑡, 𝑝∗

𝑡 ) – seem the natural candidates. Because of market clearing,
this is equivalent to conjecturing the behavior of (functions of) the aggregate distribution of
capital. FollowingKaplan et al. (2020)we restrict agents’ conjectures about equilibriumprices
to deterministic functions of the log-TFP state 𝑎, which is then the only additional state vari-
able households need to track in their individual plans. This assumption is admittedly not
general, but convenient, and allows agents to factor in the random character of prices, unlike
Krusell and Smith (1998). The finite dimension of the unknown price functions renders an
adaption of Krusell and Smith (1998)’s methodology quite straightforward, as we outline in
the Appendix.

4 Estimation
In order to obtain reasonable parameter values for preferences, technology and the dynamics
of state variables, we rely on a combination of calibration and econometric estimation. We
refer to Appendix C.2 for a more detailed description of the procedure.

Borrowing from the mainstream literature, we set the capital share to 𝛼 = 0.33 and the
capital depreciation rate to 𝛿 = 0.025, to match the 10% rate of capital depletion per year
found in US data. We normalize 𝜈, the scale parameter for the disutility of labor, so that the
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(deterministic) steady-state value of employment is 1.8 We calibrate the intensity matrix Λ𝜀

of the idiosyncratic employment state in order to match the discrete-time annual equivalent
used in Krusell and Smith (1998), while we dogmatically set the 3 possible values of the id-
iosyncratic preference rate to account for reasonable degrees of patience: 𝛽1 = − log 0.975,
𝛽2 = − log 0.988 and 𝛽3 = − log 0.999. We also restrict the intensity matrix of the latter vari-
able, so that no transitions are possible between extreme states: 𝜆𝛽

13 = 𝜆𝛽
31 = 0.

We work with 𝑛𝑎 = 9 possible states for log-TFP 𝑎𝑡. We adopt the following strategy to
identify the transition matrix Λ𝑎: we assume that the embedded discrete-time Markov chain
of 𝑎𝑡 approximates at yearly frequency the AR-1 process

𝑎𝑡 = 𝜌𝑎 𝑎𝑡−1 + 𝜎𝑎 𝑢𝑡 (23)

where 𝑢𝑡 is a standard Gaussian innovation. Given parameters 𝜌𝑎 and 𝜎𝑎,9 the Rouwenhorst
(1995) discretization procedure identifies the states 𝑎𝑖, 𝑖 = 1, … , 𝑛𝑎, and the yearly transition
probability matrix of the approximating Markov chain. The continuous-time intensities in Λ𝑎

are chosen to match the latter.
We estimate the set of free parameters Ω = (𝜆𝛽

12, 𝜆𝛽
21, 𝜆𝛽

23, 𝜆𝛽
32, 𝜌𝑎, 𝜎𝑎, 𝜑, 𝛾, 𝜃) with the Sim-

ulated Method of Moments of Duffie and Singleton (1993) and Lee and Ingram (1991). We
consider a set of 11moments of aggregate consumption, output, investment, and labor supply:
in particular, we match quarterly variances and one-quarter autocovariances of each variable,
and contemporaneous covariance of output with the other three. Real moments are com-
puted on quarterly time series from 1947 to 2017 on real GDP per capita, real non-durable and
services consumption expenditure per capita, real total private fixed investment (including
durable consumption) per capita, and total hours in the non-farm business sector. All series
are from the US Department of Commerce, Bureau of Economic Analysis (BEA) or the US
Bureau of Labor Statistics (BLS). We augment this collection with two additional moments
of the wealth distribution extracted from the US Survey of Consumer Finances: the fraction of
total wealth owned by the wealthiest 5% and the poorest 5% of the population.

We now turn to estimation results, focusing on the baseline IES specification given in (13).
Table 1 reports the SMM parameter estimates, and the corresponding 𝑡-statistics. Point es-
timates of preference parameters are 𝛾 = 0.9 and 𝜃 = 1.14. A positive value for 𝛾 implies
an elasticity of intratemporal substitution that is increasing in the level of consumption across
the population while markups are decreasing in the same quantity. Figure 1 confirms this
coutercyclicality by plotting the equilibrium mark-up (B.20) conditional on the log-TFP state
𝑎𝑡. Mark-up values range from approximately 31% in good times to 60% in bad times, con-
sistent with estimates based on macro data, though larger than those reported by the micro
literature.10 The unconditional value is 41%, larger than the 16% obtained by Cavallari and
Etro (2020) in the Bayesian estimation of their representative agent model with 𝐼𝐸𝑆 prefer-
ences.11 The ‘aggregate’ elasticity of intratemporal substitution 𝜖𝑡 – defined in Section 2.4 –

8See equation (C.36) in Appendix C.2.
9‘Though 𝜌𝑎 and 𝜎𝑎 are part of the SMM procedure below, we check that their point estimates are not far off

the values obtained by OLS (auto)regression on the time series of Total Factor Productivity at Constant National
Prices for United States’ (part of FRED database maintained by St. Louis FED).

10See, for instance, Rotemberg and Woodford (1999) and Basu and Fernald (1997)
11Cavallari and Etro (2020) obtain a larger point estimate for the linear component, 𝛾 = 1.99.
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implied by these estimates ranges from 4.2 in good times to 2.6 in bad times, and the ‘aggre-
gate’ elasticity of intertemporal substitution 𝜒𝑡 displays a similar procyclical pattern, increasing
from 1.31 in bad times, to 1.54 in good times. Both ranges are consistent with those typically
entertained in macroeconomics.12 In particular, the procyclical behavior of the intertemporal
elasticity is consistent with evidence from Attanasio and Browning (1995b), who argue that
it is increasing in the level of aggregate consumption.

Table 2 reports actual and simulated moments, with 𝑡-statistics for the hypothesis that
they are statistically distinct, in addition to the 𝐽-statistics for the test of over-identifying re-
strictions. The 𝐽-test does not reject the specification at even the 10% level, implying that the
model provides a good overall match to the set of moments viewed collectively. Most sim-
ulated moments in Table 2 match the corresponding data moments with sufficient accuracy.
For allmoment conditionswe can reject the hypothesis that simulated and actualmoments are
statistically different at the 5% confidence level. Only in two cases we can’t reject it at the 10%
level: variance of aggregate consumption and, (marginally) correlation between aggregate
consumption and output, whereby the model overshoots in both cases. This is a consequence
of the well-known tension that frictionless RBC models – with aggregate uncertainty driven
by log-TFP alone – face when asked to match both volatile investment and smooth consump-
tion. The estimation tries to copewith this trade-off by increasing the volatility of log-TFP (𝜎𝑎)
to levels higher than usual, while decreasing its persistence (𝜌𝑎) to the bottom of the plausible
range.

In Table 3 we report a set of statistics implied by the fitted moments which is easier to in-
terpret. The goodness-of-fit of the model with regard to standard deviations and correlations
of aggregate consumption, investment, output and labor is quite apparent. In particular, the
correlation between consumption and output closely resembles the data, overcoming a well-
known difficulty of standard RBC models in this respect. Investments and labor policies,
though, appear excessively procyclical. First order auto-correlations, on the other hand, show
that empirical persistence levels are closelymimicked. Importantly, themodel is close to repli-
cating a few characteristics of the unconditional distribution ofwealth. The 2%wealth share of
the bottom 5% of the population is matched exactly, whereas the model-implied wealth share
of the top 5% is 38%, smaller than the 48% observed empirically. 2 confirms that the latter
moment condition is significantly different from zero at standard confidence level. Indeed, a
Gini coefficient of 0.61, as opposed to an empirical value of 0.82, suggests that the model falls
short in generating a degree of wealth inequality that is fully consistent with the data. This
reflects thewell-known difficulty tomatch the high concentration observed in the extreme up-
per tail of thewealth distribution in the data. Moreover, the requirement to fit both a battery of
macroeconomic moments and key characteristics of the wealth distribution has proven quite
a challenging task, leading to a slight worse outcome in the distribution compartment, rela-
tive to studies targeting only the latter but ignoring macro-moments.13 Interestingly, Figure 3
shows that wealth inequality is countercyclical in our model, because both the Gini coefficient
and the top 5% wealth share in the conditional wealth distribution are inversely related to the
log-TFP state. We will come back to this point in the sequel.

12See for instance the meta-analysis in Havranek et al. (2015).
13Carroll et al. (2017), for instance, propose an heterogeneous-agents RBCmodel with life-cycle labor income.

As in our case, they exploit the idea of time-preference heterogeneity to match the empirical wealth distribution,
originally proposed by Krusell and Smith (1998).
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It is interesting at this point to gauge the extent to which the time-varying elasticity of sub-
stitution contributes to the goodness-of-fit, in our baseline specification. To this end, we have
applied the same estimation strategy to a version of the model featuring constant elasticity
of substitution, namely a 𝐶𝐸𝑆 aggregator, which amounts to imposing the constraint 𝛾 = 0.
Results of this exercise are reported in columns ‘CES-HA’ of Tables 1, 2 and 3. The 𝐽-statistics
clearly shows that the CES specification provides a worse overall match to the set of moments
viewed collectively. In particular, it struggles to match the low standard deviation of aggre-
gate consumption and the large variability of investment. Moreover, the properties of the
theoretical distribution of wealth appear inconsistent with their empirical counterparts, due
to an inadequate amount of inequality, highlighted by the small top 5%wealth share and Gini
coefficients. We can conclude that the data appear to favor our specification with increasing
elasticity of substitution.

5 Wealth and shock propagation
We now turn to the transmission mechanism at work in the model. We start with an intuitive
illustration of the aggregate dynamics by means of impulse response functions. Then, we
consider optimal policies and the wealth distribution conditional on the state of the economy.
Figure 7 displays the responses of selected variables to a one standard deviation increase in
productivity (positive supply hock) together with confidence bands at the 5% level of signifi-
cance (shaded areas). Black lines refer to the benchmark model with IES elasticity, while red
lines correspond to the variant with constant elasticity (CES). Figure 8 does the same for the
benchmark model (black lines) against the representative agent model (red lines).

The aggregate dynamics is qualitatively similar across specifications: output and its com-
ponents boost in the aftermath of the productivity rise. Markups, on the contrary, are coun-
tercyclical under IES preferences. Quantitatively, the responses are larger under IES prefer-
ences, though the differences are not always statistically significant (confidence bands overlap
for output, employment and investment). The response of consumption, for instance, is more
than twice as large, reflecting a strong incentive to consume in periods in which markups
are low. Interestingly, the wealth effects are very large indeed in the benchmark economy,
much larger (in absolute value) than under CES preferences. The share of wealth held by the
bottom 5% increases by almost 6 percent against less than 1 percent with CES preferences.
In addition, there is a significant drop in the wealth share at the top of the distribution (the
magnitude is around 10 percent) while the response is not statistically significant at standard
confidence levels under CES preferences. The reason is the lack of amplification effects in the
CES case. Not only is the coutercyclical markup channel muted – as the intratemporal elas-
ticity is constant – but also the intertemporal elasticity channel is absent, since this quantity
is identically equal to one in the log-CES case. In particular, there is no increase in the substi-
tution motives of the less wealthy to propel the responses, nor a substantial redistribution of
wealth in favor of the lower range of the population, to the extent that the response of wealth
shares is negligible. Our insight is that macroeconomic dynamics and wealth inequality are
linked, and the reasons why increasing elasticity generates more aggregate volatility are the
same reasons why it also generates a more skewed wealth distribution compared to the CES
case. In fact, under increasing elasticity the optimal policies at the extremes of the distribu-
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tion are further apart from each other. The more heterogeneous are the optimal policies in the
tails of the distribution and the fatter these tails, the larger is the effect of aggregate shocks on
wealth inequality. We will soon come back to this.

Not surprisingly, the responses in the benchmark economy are not significantly different
from those generated by a representative agent economy with the same preferences (Figure
8).14 In fact, a well-known implication of approximate aggregation is that aggregate variables
can be almost perfectly described as functions of the mean of the wealth distribution and the
aggregate shock. The approximation, however, is less likely to hold for consumption, espe-
cially in the very early aftermath of the shock. As it will be apparent in a while, this reflects
the fact that consumption policies are non-linear with respect to wealth and they are hetero-
geneous across agents, so that aggregate shocks have a strong impact on wealth inequality.
Large wealth effects are known to weaken the approximation (for instance, Huggett (1997),
and Krueger and Kubler (2004)). At this point, it is worth exploring in detail the mechan-
ics of shock propagation under increasing elasticity. In both the HA and the RA models,
we observe the amplification mechanism described in Cavallari and Etro (2020). A positive
TFP shock reduces markups (because of increasing intratemporal elasticity), while increasing
wages and interest rates. The effect of lower prices today compared to the future is ampli-
fied by an increase in the intertemporal elasticity of substitution. Hence, the additional labor
income, prompted by the wage and the demand increase, finances both consumption (substi-
tution due to lowermarkup) and investment (substitution due to higher interest rate), thereby
boosting output. The dynamics of consumption (and saving) is however different. In the RA
model, the response of consumption is initially muted, it picks up in later periods and then
dies out slowly compared to the heterogeneous agent case. This reflects the fact that it takes
time for markups to adjust to a higher level of consumption: the initial drop is almost ex-
clusively driven by the TFP shock alone, while markups further reduce over time as long as
consumption increases. Approximate aggregation in the HA model implies that agents fully
anticipate the entire dynamics of markups, and are therefore induced to react more strongly
in the immediate aftermath of the shock. In addition, the response of aggregate consumption
reflects the large contribution of the less wealthy group of the population, who have higher
MPC.

The benchmark and its representative agent counterpart appear to achieve things differ-
ently also in the long run. In order to see why, compare the steady-state density of wealth
in the RA model and the distribution of wealth in the benchmark economy (Figure 2 plots).
The density in the RA economy considers a rather limited range of wealth, concentrated in the
upper end of the range visited by the population in the heterogeneous-agent model. There-
fore, while the twomodelsmay generate similar aggregate outcomes, the representative agent
model does so by visiting a rather concentrated portion of the optimal policies, whereas the
heterogeneous agent model averages the very distinct policies at the extremes of the wealth
distribution, where most of the mass is concentrated (Figure 2).

To gauge the extent to which the demand structure is important for wealth consider the
optimal policies. Figure 4 displays optimal consumption, investment and employment poli-
cies as functions of wealth, conditional on the aggregate state (good versus bad state) for the

14The moment fit is also similar. In Table 2, the J-test does not reject the model and moment conditions are
not statistically distinguishable from zero at standard confidence levels.
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benchmark economy and for the variant with CES preferences. Remarkably, the level of de-
sired (optimal) consumption is higher for any level of wealth under IES preferences (while
investment and employment are correspondingly lower), reflecting a stronger incentive to
consume out of disposable income (higher MPC). In addition, consumption increases non-
linearlywithwealth and does so for amuch larger range ofwealth before turning linear (recall
that non-linearities are critical for generatingwealth effects). Last but not least, the benchmark
economy implies far more diverse policies in response to the employment status, so that un-
employed have much lower consumption levels than employed for a large span of the wealth
distribution (around the bottom three deciles). In the CES model, on the contrary, hetero-
geneity is not only less substantial but it is also concentrated at the very bottom of the wealth
distribution.

These differences reflect the incentives brought about by endogenous variability in de-
mand elasticity. An increasing elasticity of intratemporal substitution generates countercyclical
fluctuations in markups that are absent under CES preferences. These, in turn, affect the price
of current relative to future consumption in a direction that reduces consumption smoothing.
In order to see why, consider a cyclical downturn (a low productivity state in our framework)
leading to a temporary drop in incomes (and therefore in consumption) throughout the econ-
omy. High markups induce agents to cut current consumption even further, in order to take
advantage of the lower price of future consumption. The effect is particularly strong for un-
employed and less wealthy agents, who spend a larger share of their income for consumption
purposes.

Moreover, the elasticity of intertemporal substitution is positively related with the level of
consumption, while it is constant under CES preferences. This implies that the populationwill
respond heterogeneously to aggregate fluctuations. As Figure 4 shows, households with low
levels of wealth display weaker intertemporal substitution motives (especially if unemployed)
compared to wealthier households. Consequently, their precautionary savings will be smaller
for any level of wealth and for any state of the economy. The endogenous variability of the
elasticity of intertemporal substitution in our setup is in line with evidence stressing that the
asset demand of wealthier agents is far more elastic than the demand of the less wealthier
group (e.g., Guvenen (2006)).

The ample heterogeneity of intertemporal substitution in our benchmark generates not
only a more skewed profile of wealth distribution compared to the CES case (see Figure 2),
but also countercyclical movements in wealth inequality. In Figure 2, the Lorenz curve in the
bad state lays below the curve in the good state, pointing to an increase of inequality in re-
cessions, in line with the behavior of the Gini coefficient as a function of the aggregate state
(Figure 3). The variability of inequality over the business cycle comes mainly from the behav-
ior of households in the lower range of the distribution, who grab a higher (lower) fraction
of wealth in good (bad) times. For poorer households, a positive TFP shock increases the
elasticity of intertemporal substitution much more than for wealthier households (Figure 4).
Therefore, the additional labor income (for the employed, who are the majority in the steady
state, and benefit from higher wages) finances not only increased consumption (reacting to
lower markups), but also higher savings (reacting to an increase in the interest rate). On
top of these effects, there is the usual desire to accumulate wealth in good times to smooth
consumption in bad times (remember that the productivity process is mean-reverting).
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It is useful at this point to consider the properties of the marginal propensity to consume
both across the population and in aggregate terms. The MPC is the (expected) fraction con-
sumed out of a windfall wealth gain over a discrete time interval, a year in our case. It is
important to understand the behavior of this indicator over different fringes of the popula-
tion, in order to quantify the aggregate effect. Figure 6 reports MPCs conditional on the state
of the economy for the baseline model (IES-HA), for the variant with heterogeneous agents
and CES preferences (CES-HA) and for the representative-agent model with IES preferences
(IES-RA). Extensive microeconomic evidence reports estimates in the range between 0.2 and
0.6 (for a comprehensive survey see, among others, Carroll et al. (2017)). In addition, it sup-
ports the notion that the MPC is higher in recessions (Gross et al. (2020), for instance, argue
that the MPC was 20 to 30% higher during the Great Recession relative to normal times).

The baseline model delivers an unconditional value for the aggregate MPC equal to 0.21,
which is in the lower range of empirical estimates. Interestingly, the MPC varies in a conter-
cyclical way as is observed in the data, ranging between a value as low as 0.1 in very good
times and a value of 0.3 in very bad times. At a microeconomic level, the MPC decreases with
wealth, and is maximal for poor and unemployed households, once again in line with evi-
dence. Therefore, the aggregate MPC is mainly driven by the large cluster of population in
the low-wealth range. Qualitatively, the behavior of theMPC is similar also in the variant with
CES preferences and in the representative agent model under IES preferences.15 In both these
models, however, the unconditional value falls largely short of the empirical range. Moreover,
the RAmodel generates far less variability of theMPC in terms of wealth. In fact, the economy
here spends most of the time in a wealth region where the MPC peaks at about 0.11 (see the
steady state distribution reported in Figure 2). We deduce that IES preferences, by delivering
a state-dependent elasticity of intertemporal substitution – smallest for poor households – are
important for the performance of the model. Clearly, the absence of idiosyncratic risk in the
RA version takes its toll.

Given the importance of the demand structure in our setup, we finally explore its sensitiv-
ity with respect to the parameter 𝛾, which governs the linear (non-homothetic) component
of consumption utility (13). A non-zero value for 𝛾 represents a deviation from the CES
paradigm, while 𝛾 > 0 (𝛾 < 0) captures an increasing (decreasing) elasticity of substitution.
In Figure 9, we consider four different values, two of which larger and two smaller than the
point estimate obtained in the SMM exercise. All other parameters are unchanged. We then
solve the model for each case, and report optimal policies and other equilibrium quantities.

Larger values of 𝛾 increase the intratemporal elasticity of substitution, and therefore gener-
ate smaller equilibrium markups for all TFP states. The intertemporal elasticity of substitution
is also increasing in 𝛾 for all wealth levels. The combination of these two effects increases the
optimal consumption policy for both the employed and the unemployed, while the smaller
marginal utility of wealth depresses labor demand and investment. In Figure 10 we report the
properties of the wealth distribution and the marginal propensity to consume obtained from
the same exercise. Consistently with the notion that increasing elasticity favors the clustering
of the wealth distribution towards the extremes, the wealth share of the richest (poorest) 5%

15Carroll et al. (2017) have shown similar results in the context of a CES-HAmodel with idiosyncratic income
shocks and heterogeneous time-preference rates. In quantitative terms, our variant of the CES-HA model per-
forms disadvantageously compared to previous studies. On the bright side, our variant targets a broader range
of moment conditions.
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of the population increases (decreases) with 𝛾. The enhanced bimodality of the distribution,
in turn, leads to more inequality, as is confirmed by the positive relation between the Gini
coefficient and 𝛾. The exercise confirms the ability of our setup with increasing elasticity to
predict wealth distributions aligned with empirical evidence. The same conclusion holds for
the marginal propensity to consume. TheMPC is increasing in 𝛾 for less wealthy households,
and especially in bad states. Richer households, on the contrary, experience almost no effect.

6 Conclusions
In this paper, we have introduced a general class of additive separable non-homothetic prefer-
ences over differentiated goods in an otherwise standard incomplete market (SIM) heteroge-
neous agents (HA)model, featuring both idiosyncratic (income) and aggregate (TFP) shocks,
as in Krusell and Smith (1998). The combination of heterogeneity and non-homotheticity
opens the way to a rich demand system, whereby optimal consumption (and saving) policies
depend on novel mechanisms of intertemporal substitution varying across the population.
Themodel’s numerical predictions –made possible by a tractable yet global solution approach
– have allowed us to argue that demand plays an important role for wealth inequality and the
propagation of shocks in the economy.
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Tables

Model: IES-HA

𝜆𝛽
12 𝜆𝛽

21 𝜆𝛽
23 𝜆𝛽

32 𝜌𝑎 𝜎𝑎 𝛾 𝜑
0.747
(0.075)

0.687
(0.093)

0.942
(0.174)

1.0
(0.168)

0.750
(0.19)

0.021
(0.009)

0.900
(0.306)

0.974
(0.261)

𝜃
1.144
(0.08)

Model: CES-HA

𝜆𝛽
12 𝜆𝛽

21 𝜆𝛽
23 𝜆𝛽

32 𝜌𝑎 𝜎𝑎 𝜑 𝜃
0.891
(0.190)

0.698
(0.326)

0.209
(0.119)

0.393
(0.132)

0.750
(0.092)

0.0096
(0.003)

0.874
(0.161)

1.434
(0.182)

Model: IES-RA
𝜌𝑎 𝜎𝑎 𝜑 𝛾 𝜃

0.927
(0.108)

0.0098
(0.0051)

0.973
(0.319)

1.276
(0.432)

2.275
(0.292)

TAB. 1: SMMPoint Estimates. Point estimates for the parameters of the heterogeneous agents model with IES (IES-HA)
or CES (CES-HA) preferences, and the representative-agent model with IES preferences (IES-RA). Estimates are obtained
with the Simulated Method of Moments, as described in the Appendix. Asymptotic standard errors of parameter estimates
are reported in parenthesis.
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IES-HA CES-HA IES-RA Data

𝔼[(∫0.25
0 𝑌𝑠𝑑𝑠)2] − 𝑌

2 0.0002999
(1.132)

0.0003409
(1.740)

0.0003519
(1.832) 0.000256

𝔼[(∫0.25
0 𝐿𝑠𝑑𝑠)2] − 𝐿

2 0.000085
(0.361)

0.000015
(-1.069)

0.000115
(1.269) 0.000079

𝔼[(∫0.25
0 𝐶𝑠𝑑𝑠)2] − 𝐶

2 0.000189
(1.564)

0.000321
(2.949)

0.00029
(1.864) 0.000151

𝔼[(∫0.25
0 𝐼𝑠𝑑𝑠)2] − 𝐼

2 0.006525
(1.042)

0.004056
(-2.057)

0.004925
(-1.042) 0.005576

𝔼[(∫0.25
0 𝑌𝑠𝑑𝑠)(∫0.25

0 𝐿𝑠𝑑𝑠)] − 𝑌𝐿 0.00007927
(-0.735)

0.0000543
(-2.474)

0.00012927
(0.435) 0.000095

𝔼[(∫0.25
0 𝑌𝑠𝑑𝑠)(∫0.25

0 𝐶𝑠𝑑𝑠)] − 𝑌𝐶 0.000199
(1.7699)

0.000279
(1.471)

0.0000799
(-2.3699) 0.000152

𝔼[(∫0.25
0 𝑌𝑠𝑑𝑠)(∫0.25

0 𝐼𝑠𝑑𝑠)] − 𝑌𝐼 0.0011459
(1.036)

0.000575
(-0.458)

0.001279
(1.236) 0.000973

𝔼[(∫0.25
0 𝑌𝑠𝑑𝑠)(∫0.5

0.25 𝑌𝑠𝑑𝑠)] − 𝑌
2 0.000240

(0.698)
0.000317
(2.006)

0.000290
(1.618) 0.000217

𝔼[(∫0.25
0 𝐿𝑠𝑑𝑠)(∫0.5

0.25 𝐿𝑠𝑑𝑠)] − 𝐿
2 0.000059

(-0.207)
0.000013
(-1.308)

0.000089
(0.907) 0.000062

𝔼[(∫0.25
0 𝐶𝑠𝑑𝑠)(∫0.5

0.25 𝐶𝑠𝑑𝑠)] − 𝐶
2 0.000154

(1.466)
0.000294
(15.741)

0.000104
(-1.066) 0.000124

𝔼[(∫0.25
0 𝐼𝑠𝑑𝑠)(∫0.5

0.25 𝐼𝑠𝑑𝑠)] − 𝐼
2 0.005456

(1.299)
0.00600
(1.594)

0.004435
(0.084) 0.004432

𝔼[𝑊𝐿𝑡]
0.021
(0.116)

0.014
(-1.166) - 0.02

𝔼[𝑊𝐻𝑡]
0.38

(-1.916)
0.162

(-4.166) - 0.48

𝐽-test 3.21
(𝑝 ∶ 0.201)

5.31
(𝑝 ∶ 0.150)

8.11
(𝑝 ∶ 0.231)

TAB. 2: Optimal Moment Conditions in the SMM estimation. Theoretical (i.e. fitted) and empirical moment restric-
tions in the SimulatedMethod of Moments estimation procedure, for the heterogeneous agents model with IES (IES-HA) or
CES (CES-HA) preferences, and the representative-agent model with IES preferences (IES-RA). Theoretical (simulated)
moments are evaluated at the point estimates, minimizing the SMM quadratic form. Parenthesis report the T-statistics
(computed with asymptotic standard errors) for the hypothesis that moment conditions (i.e. theoretical moment - empirical
moment) differ from zero. 𝑊𝐿𝑡 (𝑊𝐻𝑡) denotes the fraction of total wealth owned by the poorest (wealthiest) 5% of the
population. The last row reports Hansen’s 𝐽-test statistics, with its 𝑝−value in parenthesis. The notation is as follows:
Aggregate Output (Y), Consumption (C), Investment (I) and Labor Supply (L). 𝑌 = 𝔼[∫0.25

0 𝑌𝑠𝑑𝑠], and similarly for
the other policies
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IES-HA CES-HA IES-RA Data
𝜎(𝑌𝑡) 0.0173 0.0184 0.0187 0.0160
𝜎(𝐿𝑡) 0.0092 0.0038 0.0107 0.0089
𝜎(𝐶𝑡) 0.0137 0.0179 0.0298 0.0123
𝜎(𝐼𝑡) 0.0807 0.0636 0.0701 0.0746
𝜌(𝑌𝑡, 𝐿𝑡) 0.495 0.759 0.642 0.668
𝜌(𝑌𝑡, 𝐶𝑡) 0.836 0.844 0.515 0.773
𝜌(𝑌𝑡, 𝐼𝑡) 0.819 0.489 0.971 0.815
𝜌(𝑌𝑡, 𝑌𝑡−1) 0.803 0.931 0.824 0.847
𝜌(𝐿𝑡, 𝐿𝑡−1) 0.689 0.912 0.774 0.785
𝜌(𝐶𝑡, 𝐶𝑡−1) 0.818 0.914 0.570 0.821
𝜌(𝐼𝑡, 𝐼𝑡−1) 0.836 0.616 0.980 0.794
% wealth bottom 5% 0.021 0.014 - 0.02
% wealth top 5% 0.38 0.162 - 0.48
Gini coeff. % 0.61 0.26 - 0.82

TAB. 3: Model-Implied Moments vs Empirical Moments. Unconditional standard deviation (𝜎) and correlation (𝜌)
of Aggregate Output (Y), Consumption (C), Investment (I) and Labor Supply (L), implied by the heterogeneous agents
models with 𝐼𝐸𝑆 (IES-HA) or 𝐶𝐸𝑆 (CES-HA) preferences. Model-implied moments are computed by simulation using
the point estimates of the SMM, with the policy series simulated in the estimation itself. ‘% wealth bottom (top) 5%’ is the
percentage of wealth held by the population in the bottom (top) 5% of the unconditional wealth distribution. ‘Gini coeff.’
is the Gini coefficient of the unconditional wealth distribution.
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FIG. 1: Equilibrium Interest Rate and Mark-Up. Upper Panels: equilibrium interest rate in the heterogeneous-agents
model with IES preferences (left panel) and CES preferences (right panel). Bottom Panel: equilibrium mark-up in the
heterogeneous-agents model with IES preferences. All quantities are obtained used SMM parameter estimates.
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FIG. 2: Equilibrium Distributions of Wealth and Lorenz Curves. Equilibrium distribution of wealth conditional on
the lowest (dim area) and highest (light area) log-TFP state, for the heterogeneous-agents model with IES (left-upper panel)
and CES (right-upper panel) preferences. The left-bottom panel shows the ergodic density of wealth for the representative-
agent model with IES preferences. The right-bottom panel reports the equilibrium wealth share held by each fraction of
the population (Lorenz curve), conditional on the lowest (dotted line) and highest (solid line) log-TFP state, for the
heterogeneous-agents model with IES (black lines) and CES (red lines) preferences. Equilibrium distributions are ob-
tained with SMM parameter estimates.
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FIG. 3: Wealth Shares and Gini Coefficients of Equilibrium Distribution of Wealth. Upper Panel: Percentage
of wealth held by bottom 5% (circles, left 𝑦−axis) and top 5% (stars, right 𝑦−axis) of the equilibrium distribution of
wealth, conditional on the log-TFP state, for the heterogeneous-agents model with IES (left panel) and CES (right panel)
preferences. Bottom Panel: Gini coefficients of the equilibrium wealth distribution conditional on the log-TFP state, for
the heterogeneous-agents model with IES (left panel) and CES (right panel) preferences. Equilibrium distributions are
obtained with SMM parameter estimates.
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FIG. 4: Optimal Policies, and Intertemporal Elasticity of Substitution (IES vs CES). Left (right) panels report
quantities conditional on lowest (highest) log-TFP state 𝑎1 (𝑎9). Red (Black) lines report policies for the heterogeneous-
agents model with CES (IES) preferences, while solid (dotted) lines report policies for employed (unemployed) agents,
𝜀𝑡 = 0 (𝜀𝑡 = 1). All quantities are plotted using the middle level of time preference rate, 𝛽2, and using the parameters
obtained in the SMM estimations.
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FIG. 5: Optimal Policies, and Intertemporal Elasticity of Substitution (HA vs RA). Left (right) panels report
quantities conditional on lowest (highest) log-TFP state 𝑎1 (𝑎9). Red lines report policies for the representative-agent
(RA) model with IES preferences, while black lines are policies for the heterogeneous-agents (HA) model with the same
preferences . In the HA case, solid (dotted) lines report policies for employed (unemployed) agents, 𝜀𝑡 = 0 (𝜀𝑡 = 1), and
are plotted using the middle level of time preference rate, 𝛽2. Parameters obtained in the SMM estimations have been used.
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FIG. 6: OptimalMarginal Propensities toConsume. Marginal propensities to consume (MPC) over a 1-year time hori-
zon, corresponding to optimal consumption and saving policies, obtained with the SMM baseline parameter estimates. Top
panels report conditional MPC, corresponding to the lowest (left) and highest (right) log-TFP state, for the heterogeneous-
agents model with IES (black lines) and CES (red lines) preferences, employed (solid lines) and unemployed (dashed lines)
agents. The middle panel reports the same quantities for the heterogeneous-agents model with IES preferences (IES-HA)
and the representative-agent model with the same preferences (IES-RA). The bottom panel reports the aggregate MPC con-
ditional on log-TFP, and the unconditional level as a dotted line, with IES (left) and CES preferences (right). All quantities
are plotted using the middle level of time preference rate, 𝛽2.
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FIG. 7: Impulse Responses (IES vs CES) . Impulse Responses of Output, Consumption, Investment, Labor Supply,
Mark-Up, percentage of wealth held by top and bottom 5% of the population, presented as variations due to a positive one
standard deviation TFP shock, as a fraction of steady state values. Solid lines are impulse responses corresponding to SMM
point estimates of parameters, for the heterogeneous-agents model with IES (black lines) and CES (red lines) preferences,
while dotted lines and the shaded area in between are 5-95% confidence bands.
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FIG. 8: Impulse Responses (HA vs RA) . Impulse Responses of Output, Consumption, Investment, Labor Supply, Mark-
Up, presented as variations due to a positive one standard deviation TFP shock, as a fraction of steady state values. Solid
lines are impulse responses corresponding to SMM point estimates of parameters, for the heterogeneous-agents model with
IES preferences (black lines) and the representative-agent model with the same preferences (red lines), while dotted lines
and the shaded area in between are 5-95% confidence bands.
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FIG. 9: Comparative Statics I: Optimal Policies. IES Heterogeneous Agents Model. Optimal consumption, invest-
ment, labor policies, intertemporal elasticity of substitution, and equilibrium mark-up obtained for 4 different values of the
parameter 𝛾, and fixing others at their baseline SMM estimates. Deviation of policies from the baseline case are reported.
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Appendix
A Steady State Solution Approach
We first illustrate the solution of our model in the steady-state, where idiosyncratic labor pro-
ductivity and time-preference shock are still present at the household level, but aggregate TFP
shocks are not. Therefore, the output rate becomes:

𝑌 = 𝐾
𝛼

𝐿
1−𝛼

where an overbar denotes constant steady-state values. 𝐺(𝑘, 𝜀, 𝛽) is the joint steady state dis-
tribution of capital, labor productivity and time-preference states, with a density 𝑔(𝑘, 𝜀, 𝛽) in
the capital dimension. The following equilibrium conditions then hold:

𝐾 = ∑
𝑖=1,2

∑
𝑗=1,2,3

∫ 𝑘 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗) 𝑑𝑘 (A.1)

𝐿 = ∑
𝑗=1,2,3

∫ 𝑙(𝑘, 1, 𝛽𝑗) 𝑔(𝑘, 1, 𝛽𝑗) 𝑑𝑘 (A.2)

𝐶 = ∑
𝑖=1,2

∑
𝑗=1,2,3

∫ 𝑐(𝑘, 𝜀𝑖, 𝛽𝑗) 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗) 𝑑𝑘 (A.3)

𝑤 = (1 − 𝛼)(𝐾/𝐿)𝛼, 𝑟 = 𝛼(𝐾/𝐿)𝛼−1 (A.4)

𝑝∗ = 1
1 − 𝜗

, 𝜗 = − 𝐶

∑
𝑖=1,2

∑
𝑗=1,2,3

∫
𝑢′(𝑐(𝑘, 𝜀𝑖, 𝛽𝑗))
𝑢″(𝑐(𝑘, 𝜀𝑖, 𝛽𝑗))𝑔(𝑘, 𝜀𝑖, 𝛽𝑗) 𝑑𝑘

, (A.5)

where 𝑐( ⋅ ) and 𝑙( ⋅ ) denote the optimal individual consumption and labor policies derived
below.

A.1 Households’ Problem and Steady-State Distribution
Taking as given production factor and consumption good steady-state prices (𝑟, 𝑤, 𝑝∗), and
assuming a vanishing individual share of redistributed profits,16 Π ≈ 0, households solve
their individual consumption-investment problem (5) subject to the continuous-timeMarkov
Chain dynamics of the labor productivity and time-preference states.

The problem could in principle be solvedwith themartingalemethod developed inHe and
Pagès (1993), whose dual formulation leads to a linear variational equality to be solved. We
sketch this approach in the Appendix E.1, for completeness, as it would lead to a very explicit
characterization if the subutility function was of the CES type. In our IES case, though, the
inability to solve explicitly for the optimal consumption rule (as a function of the state-price
density and the dynamic Lagrange multiplier) undermines the advantages of this method.
Hence, we directly tackle the dynamic programming formulation of the problem.

16This is due to our assumption of a diffuse measure of households.
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Let𝑉(𝑘, 𝜀𝑖, 𝛽𝑗) denote the value function of the dynamic program (5), in labor productivity
state 𝑖 ∈ {1, 2} and time-preference state 𝑗 ∈ {1, 2, 3}. It satisfies the following Hamilton-
Bellman-Jacobi equation

𝛽𝑗𝑉(𝑘, 𝜀𝑖, 𝛽𝑗) = sup
𝑐𝑡,𝑙𝑡≥0

⎡⎢⎢
⎣
log𝑢(𝑐𝑡) − 𝑣 𝑙1+ 1

𝜑
𝑡

1 + 1
𝜑

+ 𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗) ((𝑟 − 𝛿)𝑘 + 𝑤𝑙𝑡𝜀𝑖 − 𝑝∗𝑐𝑡)
⎤⎥⎥
⎦

+ ∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2 (𝑉(𝑘, 𝜀𝑖2 , 𝛽𝑗) − 𝑉(𝑘, 𝜀𝑖, 𝛽𝑗)) + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2 (𝑉(𝑘, 𝜀𝑖, 𝛽𝑗2) − 𝑉(𝑘, 𝜀𝑖, 𝛽𝑗)) (A.6)

where 𝑢( ⋅ ) has the IES form (13). The First Order Conditions read:

𝑢′(𝑐𝑡)
𝑢(𝑐𝑡)

= 𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗)𝑝∗, 𝑙𝑡 =
⎧{
⎨{⎩

0 if 𝜀𝑖 = 0

(𝑤𝑉𝑘(𝑘,𝜀𝑖,𝛽𝑗)
𝑣 )

𝜑
if 𝜀𝑖 = 1

(A.7)

Let 𝑐∗
𝑡 = 𝑓 (𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗)) and 𝑙∗𝑡 = ℎ(𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗))denote the optimal policies as derived (numer-

ically, in the consumption’s case) from these FOCs. The value functions solve the following
nonlinear system of ODEs:

⎛⎜⎜
⎝

𝛽𝑗 + ∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2 + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2
⎞⎟⎟
⎠

𝑉(𝑘, 𝜀𝑖, 𝛽𝑗) = log𝑢(𝑐∗
𝑡 ) − 𝑣(𝑙∗𝑡 )1+ 1

𝜑

1 + 1
𝜑

+ 𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗)𝑠(𝑘, 𝜀𝑖, 𝛽𝑗)

+ ∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2𝑉(𝑘, 𝜀𝑖2 , 𝛽𝑗) + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2𝑉(𝑘, 𝜀𝑖, 𝛽𝑗2)

𝑖 = 1, 2 𝑗 = 1, 2, 3. (A.8)

where we have used the optimal saving policy:

𝑠(𝑘, 𝜀𝑖, 𝛽𝑗) = (𝑟 − 𝛿)𝑘 + 𝑤𝑙∗𝑡 𝜀𝑖 − 𝑝∗𝑐∗
𝑡 (A.9)

The state constraint 𝑘 ≥ 𝑘 translates into 𝑠(𝑘, 𝜀𝑖, 𝛽𝑗) ≥ 0, which amounts to a nonlinear con-
straint on 𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗). The numerical solution of this system of ODEs, hence of the optimal
policies 𝑐(𝑘, 𝜀𝑖, 𝛽𝑗), 𝑙(𝑘, 1, 𝛽𝑗) and 𝑠(𝑘, 𝜀𝑖, 𝛽𝑗), is discussed in Appendix C.1.

The joint steady-state density of households over capital, labor productivity and time-
preference satisfies the following Forward Kolmogorov equation (see Achdou, Han, Lasry,
Lions, and Moll (2017)):

− 𝑑
𝑑𝑘 [𝑔(𝑘, 𝜀𝑖, 𝛽𝑗)𝑠(𝑘, 𝜀𝑖, 𝛽𝑗)] + ∑

𝑖2≠𝑖
𝜆𝜀

𝑖2𝑖𝑔(𝑘, 𝜀𝑖2 , 𝛽𝑗) + ∑
𝑗2≠𝑗

𝜆𝛽
𝑗2𝑗𝑔(𝑘, 𝜀𝑖, 𝛽𝑗2)

− ⎛⎜⎜
⎝

∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2 + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2
⎞⎟⎟
⎠

𝑔(𝑘, 𝜀𝑖, 𝛽𝑗) = 0 (A.10)

where the equation depends on the optimal saving policy (A.9) derived previously. Again, we
obtain a numerical solution using a finite-difference method, which reduces the ODE (A.10)
to an eigenvalue problem.
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A.2 Equilibrium Algorithm
In order to obtain an equilibrium, the ex-ante values of factor and consumption good-prices
taken as given (i.e. conjectured) by the households upon solving their consumption-saving
problem must coincide with their ex-post counterparts stemming from the market-clearing
conditions (A.4)-(A.5). To this end, define a mapping (𝑟2, 𝑤2, 𝑝∗

2) = 𝐹(𝑟1, 𝑤1, 𝑝∗
1) as follows:

(i) Solve the HBJ equation (A.8) using candidate steady-state prices (𝑟1, 𝑤1, 𝑝∗
1), and obtain

optimal policies 𝑐(𝑘, 𝜀𝑖, 𝛽𝑗), 𝑙(𝑘, 1, 𝛽𝑗) and 𝑠(𝑘, 𝜀𝑖, 𝛽𝑗).

(ii) Using the latter, find the candidate steady-state distribution 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗) as solution of the
Forward Kolmogorov equation (A.10).

(iii) Compute aggregate capital, labor and consumption using conditions (A.1)-(A.3), and
obtain ex-post steady-state values of prices, (𝑟2, 𝑤2, 𝑝∗

2), with conditions (A.4)-(A.5).

A steady-state equilibrium consists of a fixed point of the mapping 𝐹( ⋅ ), that is:17

(𝑟, 𝑤, 𝑝∗) = 𝐹(𝑟, 𝑤, 𝑝∗) (A.11)

B Full Model Solution Approach
Let us now consider the problem of solving for equilibrium when aggregate TFP shocks are
present, so that the output rate is given by expression (1).

For candidate price processes (𝑟1(𝑎𝑡), 𝑤1(𝑎𝑡), 𝑝∗
1(𝑎𝑡)), define amapping (𝑟2(𝑎𝑡), 𝑤2(𝑎𝑡), 𝑝∗

2(𝑎𝑡)) =
𝐹(𝑟1(𝑎𝑡), 𝑤1(𝑎𝑡), 𝑝∗

1(𝑎𝑡)) as follows:

(i) Solve the household’s consumption-saving problem (5) subject to the candidate price
processes (𝑟1(𝑎𝑡), 𝑤1(𝑎𝑡), 𝑝∗

1(𝑎𝑡)). Note that these are just finite-dimensional vectors, the
entries of which are values taken in correspondence of each log-TFP state. Extending
the argument of the previous section, the household’s value function solves the HBJ
equation:

⎛⎜⎜
⎝

𝛽𝑗 + ∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2 + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2 + ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

⎞⎟⎟
⎠

𝑉(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) = log𝑢(𝑐∗
𝑡 ) − 𝑣(𝑙∗𝑡 )1+ 1

𝜑

1 + 1
𝜑

+ 𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧)𝑠(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) + ∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2𝑉(𝑘, 𝜀𝑖2 , 𝛽𝑗, 𝑎𝑧) + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2𝑉(𝑘, 𝜀𝑖, 𝛽𝑗2 , 𝑎𝑧)

+ ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

𝑉(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧2
) (B.12)

where we have used the optimal saving policy:

𝑠(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) = (𝑟1(𝑎𝑧) − 𝛿)𝑘 + 𝑤1(𝑎𝑧)𝑙∗𝑡 𝜀𝑖 − 𝑝∗
1(𝑎𝑧)𝑐∗

𝑡 (B.13)
17In practice, a nonlinear equation solver can be employed to solve this problem, though the Jacobian of the

mapping needs to be evaluated numerically by finite difference. Alternatively, the dumped iteration

(𝑟𝑡+1, 𝑤𝑡+1, 𝑝∗
𝑡+1) = (1 − 𝜔) (𝑟𝑡, 𝑤𝑡, 𝑝∗

𝑡 ) + 𝜔 𝐹(𝑟𝑡, 𝑤𝑡, 𝑝∗
𝑡 )

converges robustly to a fixed point, provided the parameter 𝜔 is small enough.
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Moreover, 𝑐∗
𝑡 = 𝑓 (𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧)) and 𝑙∗𝑡 = ℎ(𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧)) denote the optimal policies

derived (numerically, in the consumption’s case) from the first order conditions

𝑢′(𝑐𝑡)
𝑢(𝑐𝑡)

= 𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧)𝑝∗
1(𝑎𝑧), 𝑙𝑡 =

⎧{
⎨{⎩

0 if 𝜀𝑖 = 0

(𝑤1(𝑎𝑧)𝑉𝑘(𝑘,𝜀𝑖,𝛽𝑗,𝑎𝑧)
𝑣 )

𝜑
if 𝜀𝑖 = 1

(B.14)

with 𝑢( ⋅ ) as in (13). The state constraint 𝑘 ≥ 𝑘 translates into 𝑠(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) ≥ 0, which
amounts to a nonlinear constraint on 𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧). The numerical method used to
obtain a solution of this system of ODEs, hence of the optimal policies 𝑐(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧),
𝑙(𝑘, 1, 𝛽𝑗, 𝑎𝑧) and 𝑠(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧), is described in Appendix C.1.

ii) Let 𝑔𝑡(𝑘, 𝜀, 𝛽) denote the joint density of capital, labor productivity and time-preference
at time 𝑡, for a given initial condition 𝑔0(𝑘, 𝜀, 𝛽). Its evolution in time reads:

𝑑 𝑔𝑡(𝑘, 𝜀𝑖, 𝛽𝑗) = ⎡⎢
⎣
− 𝑑

𝑑𝑘 [𝑔𝑡(𝑘, 𝜀𝑖, 𝛽𝑗)𝑠(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑡)] + ∑
𝑖2≠𝑖

𝜆𝜀
𝑖2𝑖𝑔𝑡(𝑘, 𝜀𝑖2 , 𝛽𝑗)

+ ∑
𝑗2≠𝑗

𝜆𝛽
𝑗2𝑗𝑔𝑡(𝑘, 𝜀𝑖, 𝛽𝑗2) − ⎛⎜⎜

⎝
∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2 + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2
⎞⎟⎟
⎠

𝑔𝑡(𝑘, 𝜀𝑖, 𝛽𝑗)
⎤⎥
⎦

𝑑𝑡

𝑖 = 1, 2 𝑗 = 1, 2, 3 𝑧 = 1, … , 𝑛𝑎 (B.15)

A trajectory of the density function implicitly depends on the specific history of log-TFP
until time 𝑡, through the optimal savings function 𝑠(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑡). However in the long-
run, stationarity implies that an invariant value of the conditional density 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑧)
prevails, for 𝑧 = 1, … , 𝑛𝑧. To compute the latter, we simulate a very long trajectory ̃𝑎𝑡
over a fine discretization of the time interval, and obtain the corresponding trajectory
of density functions ̃𝑔𝑡(𝑘, 𝜀𝑖, 𝛽𝑗) by iterating on (B.15) with an Euler scheme.18 After
discarding an initial burn-in period, we obtain an estimate of the conditional density
𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑧) by averaging simulations ̃𝑔𝑡(𝑘, 𝜀𝑖, 𝛽𝑗) for all dates where a realization 𝑎𝑧
took place.

(iii) Using the distribution just obtained, we compute state-wise aggregate capital, labor,

18Using an implicit scheme does not change results substantially.
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consumption, and new candidate prices (𝑟2(𝑎𝑡), 𝑤2(𝑎𝑡), 𝑝∗
2(𝑎𝑡)):

𝐾(𝑎𝑧) = ∑
𝑖=1,2

∑
𝑗=1,2,3

∫ 𝑘 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑧) 𝑑𝑘 (B.16)

𝐿(𝑎𝑧) = ∑
𝑗=1,2,3

∫ 𝑙(𝑘, 1, 𝛽𝑗, 𝑎𝑧) 𝑔(𝑘, 1, 𝛽𝑗; 𝑎𝑧) 𝑑𝑘 (B.17)

𝐶(𝑎𝑧) = ∑
𝑖=1,2

∑
𝑗=1,2,3

∫ 𝑐(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑧) 𝑑𝑘 (B.18)

𝑤2(𝑎𝑧) = (1 − 𝛼)(𝐾(𝑎𝑧)/𝐿(𝑎𝑧))𝛼, 𝑟2(𝑎𝑧) = 𝛼(𝐾(𝑎𝑧)/𝐿(𝑎𝑧))𝛼−1 (B.19)

𝑝∗
2(𝑎𝑧) = 1

1 − 𝜗(𝑎𝑧), 𝜗(𝑎𝑧) = − 𝐶(𝑎𝑧)

∑
𝑖=1,2

∑
𝑗=1,2,3

∫
𝑢′(𝑐(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧))
𝑢″(𝑐(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧))𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑧) 𝑑𝑘

,

𝑧 = 1, … , 𝑛𝑎

An equilibrium consists of a fixed point of the mapping 𝐹( ⋅ ), that is:19

(𝑟(𝑎𝑧), 𝑤(𝑎𝑧), 𝑝∗(𝑎𝑧)) = 𝐹(𝑟(𝑎𝑧), 𝑤(𝑎𝑧), 𝑝∗(𝑎𝑧)) (B.20)

C Implementation Details

C.1 Numerical Solution of the HBJ equation, the KF equation, and com-
putation of marginal propensity to consume

C.1.1 Numerical Solution of The HBJ equation (B.12)

In order to solve numerically the nonlinear ODE, we use an upwind finite difference scheme
similar to Achdou, Han, Lasry, Lions, and Moll (2017), in conjunction with time iteration,
which amounts to approximating the time invariant solution by iterating a time-varying one,
after the introduction of a fictitious time dimension. We report the HBJ equation for conve-
nience:20

𝑉𝑡(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) + ⎛⎜⎜
⎝

𝛽𝑗 + ∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2 + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2 + ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

⎞⎟⎟
⎠

𝑉(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) = log𝑢(𝑐∗
𝑡 ) − 𝑣(𝑙∗𝑡 )1+ 1

𝜑

1 + 1
𝜑

+ 𝑉𝑘(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧)𝑠(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) + ∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2𝑉(𝑘, 𝜀𝑖2 , 𝛽𝑗, 𝑎𝑧) + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2𝑉(𝑘, 𝜀𝑖, 𝛽𝑗2 , 𝑎𝑧)

+ ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

𝑉(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧2
) (C.21)

19In practice, we use the dumped iteration

(𝑟𝑡+1(𝑎𝑧), 𝑤𝑡+1(𝑎𝑧), 𝑝∗
𝑡+1(𝑎𝑧)) = (1 − 𝜔) (𝑟𝑡(𝑎𝑧), 𝑤𝑡(𝑎𝑧), 𝑝∗

𝑡 (𝑎𝑧)) + 𝜔 𝐹(𝑟𝑡(𝑎𝑧), 𝑤𝑡(𝑎𝑧), 𝑝∗
𝑡 (𝑎𝑧))

which converges robustly to a fixed point, provided the parameter 𝜔 is small enough, rather than a nonlinear
equation solver, since the Jacobian of 𝐹( ⋅ ) needs to be computed by finite difference, which can be a daunting
task, depending on the number of log-TFP states 𝑛𝑎.

20We dropped the time dimension for ease of notation.
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with 𝑢( ⋅ ) as in (13). We choose an equispaced capital grid {𝑘1, 𝑘2, … , 𝑘𝑁},21 with 𝑘1 = 0, 𝑘𝑁
equal to three times capital in the deterministic steady state, and Δ𝑘 = (𝐾𝑁 − 𝐾1)/(𝑁 − 1).
We denote by 𝑉𝑛

𝑤,𝑖,𝑗,𝑧 the value function at time iteration 𝑛, evaluated at 𝑘𝑤, 𝑤 = 1, 2, … , 𝑁,
and employment-preference-TFP state (𝜀𝑖, 𝛽𝑗, 𝑎𝑧). We use a similar notation for the optimal
consumption and labor policies 𝑐𝑛

𝑤,𝑖,𝑗,𝑧 and 𝑙𝑛𝑤,𝑗,𝑧, solving the first order conditions in (B.14),
and the saving policy 𝑠𝑛

𝑤,𝑖,𝑗,𝑧 given in (B.13). In the upwind scheme, at each point of the grid
the first derivative with respect to 𝑘 can be approximated with a forward (𝑓 ) or a backward
(𝑏) approximation,

𝑉𝑛
𝑤+1,𝑖,𝑗,𝑧 − 𝑉𝑛

𝑤,𝑖,𝑗,𝑧
Δ𝑘 ,

𝑉𝑛
𝑤,𝑖,𝑗,𝑧 − 𝑉𝑛

𝑤−1,𝑖,𝑗,𝑧
Δ𝑘 respectively,

depending on the sign of the drift function 𝑠𝑛
𝑤,𝑖,𝑗,𝑧 of the state variable 𝑘. Namely, we approx-

imate the HBJ (C.21) with the following implicit upwind scheme:

𝑉𝑛+1
𝑤,𝑖,𝑗,𝑧 − 𝑉𝑛

𝑤,𝑖,𝑗,𝑧
Δ +⎛⎜⎜

⎝
𝛽𝑗 + ∑

𝑖2≠𝑖
𝜆𝜀

𝑖𝑖2 + ∑
𝑗2≠𝑗

𝜆𝛽
𝑗𝑗2 + ∑

𝑧2≠𝑧
𝜆𝑎

𝑧𝑧2
⎞⎟⎟
⎠

𝑉𝑛+1
𝑤,𝑖,𝑗,𝑧 = log𝑢(𝑐𝑛

𝑤,𝑖,𝑗,𝑧)−𝑣
(𝑙𝑛𝑤,𝑗,𝑧)1+ 1

𝜑

1 + 1
𝜑
(C.22)

+
𝑉𝑛+1

𝑤+1,𝑖,𝑗,𝑧 − 𝑉𝑛+1
𝑤,𝑖,𝑗,𝑧

Δ𝑘 𝑠𝑛
𝑤,𝑖,𝑗,𝑧,𝐹1𝐹 +

𝑉𝑛+1
𝑤,𝑖,𝑗,𝑧 − 𝑉𝑛+1

𝑤−1,𝑖,𝑗,𝑧
Δ𝑘 𝑠𝑛

𝑤,𝑖,𝑗,𝑧,𝐵1𝐵 + ∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2𝑉𝑛+1

𝑤,𝑖2,𝑗,𝑧

+ ∑
𝑗2≠𝑗

𝜆𝛽
𝑗𝑗2𝑉𝑛+1

𝑤,𝑖,𝑗2,𝑧 + ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

𝑉𝑛+1
𝑤,𝑖,𝑗,𝑧2

𝑤 = 1, … , 𝑁 𝑖 = 1, 2 𝑗 = 1, 2, 3 𝑧 = 1, … , 𝑛𝑎

whereΔ is a time increment, 1𝐹 (1𝐵) is the indicator function of the event 𝑠𝑛
𝑤,𝑖,𝑗,𝑧,𝐹 > 0 (𝑠𝑛

𝑤,𝑖,𝑗,𝑧,𝐵 <
0), 𝑠𝑛

𝑤,𝑖,𝑗,𝑧,𝐹 (𝑠𝑛
𝑤,𝑖,𝑗,𝑧,𝐵) being the saving policy with optimal consumption computed with the

forward (backward) finite difference approximation of 𝑉𝑘. Thuswhen the drift of 𝑘 is positive
(negative) we employ a forward (backward) approximation of the derivative 𝑉𝑘. Notice that
consumption, labor and saving policy are evaluated at time iteration 𝑛, not 𝑛 + 1, in order to
preserve the linearity of the equation.

We impose boundary state constraints in 𝑘: 𝑠𝑛
1,𝑖,𝑗,𝑧,𝐵 = 0 and 𝑠𝑛

𝑁,𝑖,𝑗,𝑧,𝐹 = 0. Since the first
order conditions for consumption and labor hold at the boundaries, imposing this conditions
amounts to identifying boundary values for 𝑉.

Assuming quantities at time iteration 𝑛 have been solved for, expression (C.22) gives rise
to a linear system of equations, the unknown of which is the 𝑁 ×2×3×𝑛𝑎 column vector 𝑽𝑛+1,
stacking the value function at all capital grid point and employment-preference-TFP states, at
time iteration 𝑛 + 1. The linear system of equations (C.22) can be compactly written in matrix
notation:

𝑨𝑛𝑽𝑛+1 = 𝒃𝑛 (C.23)

21Typically 𝑁 = 500 in our applications.
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The 𝑁 × 2 × 3 × 𝑛𝑎 column vector 𝒃𝑛 is

𝒃𝑛 = log𝑢(𝒄𝑛) − 𝑣(𝒍𝑛)1+ 1
𝜑

1 + 1
𝜑

+ 𝑽𝑛

Δ

where we have used 𝒄 and 𝒍 to denote the optimal policy vectors, at all grid points and states,
solving the first order conditions in (B.14) at iteration 𝑛. The 𝑁 ×2×3×𝑛𝑎-dimensional square
matrix 𝑨𝑛 can easily be deducted from (C.22). It is a highly sparse matrix, thus simplifying
tremendously the numerical implementation of the problem. Time iterationmandates solving
(C.23) iteratively until its solution reaches time invariance. Therefore, starting from an initial
guess 𝑽0:

1. compute 𝑐𝑛
𝑤,𝑖,𝑗,𝑧 and 𝑙𝑛𝑤,𝑗,𝑧, solving the first order conditions in (B.14), and the saving

policy 𝑠𝑛
𝑤,𝑖,𝑗,𝑧 given in (B.13). They all depend on 𝑽𝑛. This provides us with 𝑨𝑛 and 𝒃𝑛.

2. Solve the linear system (C.23) for 𝑽𝑛+1, and stop if 𝑽𝑛+1 ≈ 𝑽𝑛.

C.1.2 The KF equation

In the full model, the sample path of the distribution of wealth required by the algorithm is
obtained by integrating the ODE (B.15) forward in time with a standard implicit scheme. To
illustrate the discretization procedure, we instead show the numerical solution of the steady-
state KF equation (A.10). We report it for convenience:

0 = − 𝑑
𝑑𝑘 [𝑔(𝑘, 𝜀𝑖, 𝛽𝑗)𝑠(𝑘, 𝜀𝑖, 𝛽𝑗)] + ∑

𝑖2≠𝑖
𝜆𝜀

𝑖2𝑖𝑔(𝑘, 𝜀𝑖2 , 𝛽𝑗) + ∑
𝑗2≠𝑗

𝜆𝛽
𝑗2𝑗𝑔(𝑘, 𝜀𝑖, 𝛽𝑗2) (C.24)

− ⎛⎜⎜
⎝

∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2 + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2
⎞⎟⎟
⎠

𝑔(𝑘, 𝜀𝑖, 𝛽𝑗) (C.25)

1 = ∑
𝜀=0,1

∑
𝛽=1,2,3

∫ 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑧)𝑑𝑘 (C.26)

𝑖 = 1, 2 𝑗 = 1, 2, 3 (C.27)

We denote by 𝑔𝑤,𝑖,𝑗 the joint density at capital grid point 𝑘𝑤 and employment-preference state
(𝜀𝑖, 𝛽𝑗). Following Achdou, Han, Lasry, Lions, and Moll (2017), we use the an upwind finite-
difference scheme which employs the following approximation

𝑑
𝑑𝑘 [𝑔(𝑘, 𝜀𝑖, 𝛽𝑗)𝑠(𝑘, 𝜀𝑖, 𝛽𝑗)] ≈

𝑔𝑤,𝑖,𝑗 max(𝑠∗
𝑤,𝑖,𝑗,𝐹, 0) − 𝑔𝑤−1,𝑖,𝑗 max(𝑠∗

𝑤−1,𝑖,𝑗,𝐹, 0)
Δ𝑘

+
𝑔𝑤+1,𝑖,𝑗,𝑧 min(𝑠∗

𝑤+1,𝑖,𝑗,𝐹, 0) − 𝑔𝑤,𝑖,𝑗,𝑧 min(𝑠∗
𝑤,𝑖,𝑗,𝐹, 0)

Δ𝑘 (C.28)
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Letting 𝒈 denote the 𝑁 × 2 × 3 × 𝑛𝑎 column vector of densities at all capital grid points and
states, we can substitute (C.28) in (C.24) to obtain a system of linear equations:

0 =𝑨 𝒈 (C.29)

1 = ∑
𝜀=0,1

∑
𝛽=1,2,3

𝑁
∑
𝑤=1

𝑔(𝑘𝑤, 𝜀𝑖, 𝛽𝑗)Δ𝑘 (C.30)

The matrix 𝑨 is singular, therefore this is an eigenvalue problem. Again, the sparsity of the
matrix enhances the numerical tractability a great deal.

C.1.3 Marginal Propensity to Consume

The above solution procedure delivers an optimal consumption policy 𝑐∗(𝑘, 𝜖, 𝛽, 𝑎), for an in-
dividual with wealth 𝑘, employment status 𝜖, subjective discount rate 𝛽, and conditional on
aggregate log-TFP state 𝑎. The slope of this function with respect to 𝑘 provides the consump-
tion (rate) gain due to a small windfall in wealth over the infinitesimal time interval. Empiri-
cally, the relevant notion of Marginal Propensity to Consume (MPC) measures consumption
gains over finite time-horizons, typically a year. As suggested in Achdou, Han, Lasry, Lions,
and Moll (2017), the continuous -time counterpart of the finite MPC is:

𝑚𝑝𝑐𝜏(𝑘, 𝜖, 𝛽, 𝑎) = 𝑑
𝑑𝑘 𝐶(0, 𝑘, 𝜖, 𝛽, 𝑎) (C.31)

𝐶(0, 𝑘, 𝜖, 𝛽, 𝑎) = 𝔼 [∫
𝜏

0
𝑐∗(𝑘𝑡, 𝜖𝑡, 𝛽𝑡, 𝑎𝑡)𝑑𝑡 ∣ (𝑘0, 𝜖0, 𝛽0, 𝑎0) = (𝑘, 𝜖, 𝛽, 𝑎)] (C.32)

By Feyman-Kac theorem, the cumulative expected optimal consumption over horizon 𝜏 solves
the system of partial differential equations

𝐶𝑡(𝑡, 𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) − ⎛⎜⎜
⎝

∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2 + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2 + ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

⎞⎟⎟
⎠

𝐶(𝑡, 𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) + 𝑐∗(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧)

+ 𝐶𝑘(𝑡, 𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧)𝑠∗(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) + ∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2𝐶(𝑡, 𝑘, 𝜀𝑖2 , 𝛽𝑗, 𝑎𝑧) + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2𝐶(𝑡, 𝑘, 𝜀𝑖, 𝛽𝑗2 , 𝑎𝑧)

+ ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

𝐶(𝑡, 𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧2
) = 0 (C.33)

with the terminal condition 𝐶(𝜏, 𝑘, 𝜀𝑖2 , 𝛽𝑗, 𝑎𝑧) = 0, where 𝑠∗(𝑘, 𝜀, 𝛽, 𝑎) denotes the optimal sav-
ings (investment) function. Analogously to the HBJ equation above, we apply an upwind
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finite difference scheme to obtain a numerical solution of (C.33), so that:

𝐶𝑛+1
𝑤,𝑖,𝑗,𝑧 − 𝐶𝑛

𝑤,𝑖,𝑗,𝑧
Δ − ⎛⎜⎜

⎝
∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2 + ∑

𝑗2≠𝑗
𝜆𝛽

𝑗𝑗2 + ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

⎞⎟⎟
⎠

𝐶𝑛
𝑤,𝑖,𝑗,𝑧 + 𝑐∗

𝑤,𝑖,𝑗,𝑧

+
𝐶𝑛

𝑤+1,𝑖,𝑗,𝑧 − 𝐶𝑛
𝑤,𝑖,𝑗,𝑧

Δ𝑘 𝑠∗
𝑤,𝑖,𝑗,𝑧1𝑠∗>0 +

𝐶𝑛
𝑤,𝑖,𝑗,𝑧 − 𝐶𝑛

𝑤−1,𝑖,𝑗,𝑧
Δ𝑘 𝑠∗

𝑤,𝑖,𝑗,𝑧1𝑠∗<0 + ∑
𝑖2≠𝑖

𝜆𝜀
𝑖𝑖2𝐶𝑛

𝑤,𝑖2,𝑗,𝑧

+ ∑
𝑗2≠𝑗

𝜆𝛽
𝑗𝑗2𝐶𝑛

𝑤,𝑖,𝑗2,𝑧 + ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

𝐶𝑛
𝑤,𝑖,𝑗,𝑧2

= 0

𝑤 = 1, … , 𝑁 𝑖 = 1, 2 𝑗 = 1, 2, 3 𝑧 = 1, … , 𝑛𝑎 (C.34)

Notice that Δ has now the interpretation of a true time step, so that we have partitioned [0, 𝜏]
into a grid of 𝑛𝑡 points, with step length Δ = 𝜏/(𝑛𝑡−1). The linear system of equations (C.34)
can be compactly written in matrix notation:

𝑨𝑪𝑛 = 𝒃𝑛+1 (C.35)

where the matrix 𝑨 is the same as in (C.23), except it is time invariant here. The 𝑁 × 2 × 3 × 𝑛𝑎
column vector 𝒃𝑛+1 is

𝒃𝑛 = 𝒄𝑛 + 𝑪𝑛+1

Δ
Starting from the terminal condition 𝑪𝑛𝑡 = 0, and given 𝑪𝑛+1, we can solve (C.35) for 𝑪𝑛, and
iterate to find 𝑪1 ≈ 𝐶(0, 𝑘, 𝜖, 𝛽, 𝑎). We then approximate the marginal propensity to consume
as:

𝑚𝑝𝑐𝜏(𝑘, 𝜖𝑖, 𝛽𝑗, 𝑎𝑧) =
𝐶1

𝑤+1,𝑖,𝑗,𝑧 − 𝐶1
𝑤,𝑖,𝑗,𝑧

Δ𝑘

C.2 Estimation Procedure
In this appendix we provide details of the combined estimation and calibration procedure
outlined in Section 4 of the main text.

In the deterministic steady-state – with log-TFP 𝑎𝑡 = 0 and no idiosyncratic employment
shock – we obtain:

𝑟 = 𝛽 + 𝛿

𝑤 = (1 − 𝛼)(𝑟/𝛼)
𝛼

𝛼−1

𝑘 = (𝑟/𝛼)
1

𝛼−1

𝑐 = 𝑘
𝛼

− 𝛿𝑘

𝑝∗ = 1
1 − 1

𝜃(1+𝛾𝑐1/𝜃)

where we set 𝛽 to the unconditional mean of the process 𝛽𝑡 obtained from its steady-state
distribution, after the estimation procedure detailed below. In order to have 𝑙 = 1, we impose
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the following value to the disutility of labor parameter:

𝜈 = 𝑤
𝑝∗

𝛾 + 𝑐−1/𝜃

𝛾𝑐 + 𝑐1−1/𝜃

1−1/𝜃

(C.36)

We calibrate the intensitymatrixΛ𝜀 of the binary employment state 𝜀𝑡 tomatch the discrete-
time, yearly transition matrix reported in Krusell and Smith (1998).22 This implies:

exp(Λ𝜀) = ⎡⎢
⎣
0.4708 0.5292
0.0372 0.9628

⎤⎥
⎦

or Λ𝜀 = log⎛⎜
⎝

⎡⎢
⎣
0.4708 0.5292
0.0372 0.9628

⎤⎥
⎦
⎞⎟
⎠

where exp(⋅) is intended as matrix exponential:

exp(𝐴) =
∞
∑
𝑘=0

𝐴𝑘

𝑘! ,

and the matrix logarithm log(⋅) being its inverse operator.
Given the autoregressive (𝜌) and volatility (𝜎𝑎) parameters of AR-1 process (23) for log-

TFP – estimated on the time series of ‘Total Factor Productivity at Constant National Prices
for United States’, obtained from the FRED database maintained by St. Louis FED – we ap-
ply the Rouwenhorst (1995) discretization procedure to identify the states and the transition
probability matrix 𝑃𝑎 of an approximating discrete-timeMarkov chain at yearly frequency. As
seen above, for the transition probability of the continuous-time Markov chain to match this
probability at a 1 year horizon, we must set:

Λ𝑎 = log(𝑃𝑎)

The parameters which have not been calibrated are then collected in the 9-dimensional
vector

Ω = (𝜆𝛽
12, 𝜆𝛽

21, 𝜆𝛽
23, 𝜆𝛽

32, 𝜌𝑎, 𝜎𝑎, 𝜑, 𝛾, 𝜃),

whichwe estimatewith the SimulatedMethod ofMoments ofDuffie and Singleton (1993) and
Lee and Ingram (1991). We first select a set of 11 moments of aggregate consumption, output,
investment and labor supply, namely quarterly variances and one-quarter autocovariances of
each variable, and the covariance between output and the other three. We obtain quarterly
series from 1947 to 2017 on real GDP per capita, real non-durable and services consumption
expenditure per capita, real total private fixed investment (including durable consumption)
per capita, and total hours in the non-farm business sector, all of which from the BAE or the
BLS, provided by the FRED database. We augment this set with two moments of the wealth
distribution extracted from the US Survey of Consumer Finances: the fraction of total wealth
owned by the wealthiest 5% and the poorest 5% of the population. We denote by 𝔼[𝑀(𝑥)] the
13-dimensional vector of real unconditional moments computed on these (HP-filtered) series,
in which 𝑥 is an i.i.d. data sample.23 Given a parameter set Ω, we compute the model-implied

22In that reference, a joint Markov chain for the unemployment and the business cycle state is provided. We
use the implied marginal probabilities.

23Concerning the two moments of the wealth distribution, we treat values extracted from the 2004 US Survey

42



counterpart of these unconditional moments by Monte-Carlo simulation. This is achieved in
the following steps:

1. We solve for the equilibrium using the iterative procedure described in Section B. This
leaves us with: 𝑖) an equilibrium joint density of wealth, employment status and prefer-
ence state, conditional on the aggregate TFP state, 𝑔(𝑘, 𝜀, 𝛽; 𝑎). 𝑖𝑖) Equilibrium consump-
tion, labor, and saving policy functions, 𝑐(𝑘, 𝜀, 𝛽, 𝑎), 𝑙(𝑘, 1, 𝛽, 𝑎), 𝑠(𝑘, 𝜀, 𝛽, 𝑎). Aggregate
policies contingent on the TFP state are then obtained. For instance:

𝐶(𝑎𝑧) = ∑
𝑖=1,2

∑
𝑗=1,2,3

∫ 𝑐(𝑘, 𝜀𝑖, 𝛽𝑗, 𝑎𝑧) 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑧) 𝑑𝑘 (C.37)

2. We simulate at high frequency a very long trajectory for 𝑎𝑡,24 using standard simulation
methods for Continuous-Time Markov Chains, from which we obtain quarterly simu-
lated series of all the aggregate policies, by evaluating equilibrium policies (C.37) at the
simulated log-TFP series. For instance:

𝐶(0.25)
𝑡 = ∫

𝑡

𝑡−0.25
𝐶( ̃𝑎𝑠)𝑑𝑠 ≈ 1

𝑛𝑠 − 1

⌈𝑛𝑠×0.25⌉
∑
𝑖=1

𝐶( ̃𝑎𝑡−⌈𝑛𝑠×0.25⌉+𝑖)

where ̃𝑎𝑡 denotes the simulated log-TFP trajectory and 𝑛𝑠 is the number of discretiza-
tion time points per year. Let 𝔼[𝑚(Ω, ̃𝑎)] denote the 13-dimensional vector of model-
implied unconditional moments computed on these simulated series, where we have
emphasized the dependence on the parameter vector. It is worthwhile to point out that
the two moments pertaining the distribution of wealth – fraction of wealth owned by
wealthiest and poorest 5% of population – have been obtained as:

𝔼 [𝑊𝐻(𝑎𝑡)] and 𝔼 [𝑊𝐿(𝑎𝑡)] (C.38)

where (denoting by 𝑘5 and 𝑘95 the 5 and 95 percentiles of the wealth distribution)

𝑊𝐿(𝑎𝑡) =
∑𝑖=1,2 ∑𝑗=1,2,3 ∫𝑘5

𝑘 𝑘 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑡) 𝑑𝑘

∑𝑖=1,2 ∑𝑗=1,2,3 ∫∞
𝑘 𝑘 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑡) 𝑑𝑘

(C.39)

𝑊𝐻(𝑎𝑡) =
∑𝑖=1,2 ∑𝑗=1,2,3 ∫∞

𝑘95
𝑘 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑡) 𝑑𝑘

∑𝑖=1,2 ∑𝑗=1,2,3 ∫∞
𝑘 𝑘 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑡) 𝑑𝑘

(C.40)

The Simulated Method of Moment estimator is:

Ω̂ = 𝑎𝑟𝑔min
Ω

(𝔼[𝑚(Ω, ̃𝑎)] − 𝔼[𝑀(𝑥)])′ 𝑊 (𝔼[𝑚(Ω, ̃𝑎)] − 𝔼[𝑀(𝑥)]) (C.41)

where theweightingmatrix𝑊 is the inverse of the covariancematrix of the empiricalmoments
𝑀(𝑥), computed with the Newey andWest (1987) estimator. We evaluate the standard errors

of Consumer Finances as unconditional moments, as in Carroll et al. (2017).
2450000 years, with 1000 time points per year. Results do not change by increasing any of these two quantities.
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of parameter estimates using the SMM asymptotic theory:

√𝑁𝐷(Ω̂ − Ω) 𝐷−→ 𝑁(0, 𝑉), 𝑉 = (1 + 1
𝑁𝑆

) (𝜕𝔼[𝑚(Ω, ̃𝑎)]′

𝜕Ω 𝑊 𝜕𝔼[𝑚(Ω, ̃𝑎)]
𝜕Ω )

−1
(C.42)

where 𝑁𝐷 is the number of true data points, 𝑁𝑆 the number of simulated data points, and
𝜕𝔼[𝑚(Ω, ̃𝑎)]

𝜕Ω is the Jacobian matrix of the vector of model-implied moments, which we compute
by finite difference. In order to test the goodness-of-fit, we test the equality of each individual
moment. In particular, the t-statistics on the individual moment conditions are calculated as
pricing errors in a standard GMM framework, using the asymptotic result:

√𝑁𝐷 (𝔼[𝑚(Ω, ̃𝑎)] − 𝔼[𝑀(𝑥)]) 𝐷−→ 𝑁 (0, 𝑊−1 − 𝜕𝔼[𝑚(Ω, ̃𝑎)]′

𝜕Ω 𝑉 𝜕𝔼[𝑚(Ω, ̃𝑎)]
𝜕Ω ) (C.43)

C.3 Impulse Responses
Given an aggregate equilibriumpolicy𝑋(𝑎𝑡) – such as the aggregate consumptiondisplayed in
(C.37), which follows a continuous-timemarkov chain with Λ𝑎 transition matrix – its impulse
response at horizon 𝜏 following a positive one-standard deviation log-TFP shock, is defined
as:25

𝐼𝑅𝜏(𝑋) =
𝑛𝑎

∑
𝑖=1

ℙ(𝑎𝑖) ( 1
𝜏 𝔼 [∫

𝑡+𝜏

𝑡
𝑋(𝑎𝑠)𝑑𝑠∣ 𝑎𝑡 = 𝑎𝑖+] − 1

𝜏 𝔼 [∫
𝑡+𝜏

𝑡
𝑋(𝑎𝑠)𝑑𝑠∣ 𝑎𝑡 = 𝑎𝑖]) (C.44)

where 𝑎𝑖+ denotes the log-TFP state that best approximates 𝑎𝑖 + 𝜎𝑎/√1 − 𝜌2𝑎 and ℙ(𝑎𝑖) denotes
the invariant probability distribution of the continuous-time markov chain for 𝑎𝑡. In other
words, the impulse response is the incremental (normalized) cumulative expectation of the
policy following a jump in log-TFP. Since we average over all possible states that might be
perturbed, using the invariant probability, we are dealing with an unconditional value.

Expression (C.44) can be computed in close-form. By Feyman-Kac theorem, the expecta-
tion 𝐽(𝑡, 𝜏, 𝑎𝑖) = 𝔼 [∫𝑡+𝜏

𝑡 𝑋(𝑎𝑠)𝑑𝑠∣ 𝑎𝑡 = 𝑎𝑖] satisfies the ODE

𝜕𝐽
𝜕𝑡 + ∑

𝑗≠𝑖
𝜆𝑎

𝑖𝑗 𝐽(𝑡, 𝜏, 𝑎𝑗) − 𝐽(𝑡, 𝜏, 𝑎𝑖) ∑
𝑗≠𝑖

𝜆𝑎
𝑖𝑗 + 𝑋(𝑎𝑖) = 0

with the terminal condition 𝐽(𝜏, 𝜏, 𝑎𝑖) = 0. The solution can easily be expressed in terms of
matrix exponential as follows:

𝐽(𝑡, 𝜏, 𝑎𝑖) = 𝑒𝑛𝑎
(𝑖)′𝑒−Λ𝑎𝜏 ∫

𝜏

0
𝑒Λ𝑎𝑠 𝑿 𝑑𝑠 (C.45)

where 𝑿 is the 𝑛𝑎-dimensional column vector of all conditional policy values, and 𝑒𝑛𝑎
(𝑖) is a

𝑛𝑎-dimensional column vector of zeros, except 1 in the 𝑖−th entry.
We also provide impulse responses for the equilibrium mark-up and the percentage of

wealth in possession of the top or bottom 5-th percentile of the wealth distribution. With this

25One standard deviation of the stationary distribution ot the approximated AR-1.
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choice of 𝑋, the impulse response is defined as

𝑛𝑎

∑
𝑖=1

ℙ(𝑎𝑖) (𝔼 [𝑋(𝑎𝑡+𝜏)∣ 𝑎𝑡 = 𝑎𝑖+] − 𝔼 [𝑋(𝑎𝑡+𝜏)∣ 𝑎𝑡 = 𝑎𝑖]) (C.46)

Solving the appropriate Feyman-Kac equation, similarly to above, the expectations appearing
in this expression are given explicitly by:

𝔼 [𝑋(𝑎𝑡+𝜏)∣ 𝑎𝑡 = 𝑎𝑖] = 𝑒𝑛𝑎
(𝑖)′𝑒−Λ𝑎𝜏 𝑿 (C.47)

The percentage of total wealth in possession of the top and bottom 5-th percentile of the
wealth distribution are, respectively:

𝑃𝑊95(𝑎𝑡) =
∑𝑖=1,2 ∑𝑗=1,2,3 ∫∞

𝛼(𝑎𝑡)
𝑘 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑡) 𝑑𝑘

𝐾(𝑎𝑡)
(C.48)

𝑃𝑊5(𝑎𝑡) =
∑𝑖=1,2 ∑𝑗=1,2,3 ∫𝛼(𝑎𝑡)

0 𝑘 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑡) 𝑑𝑘
𝐾(𝑎𝑡)

(C.49)

𝐾(𝑎𝑡) = ∑
𝑖=1,2

∑
𝑗=1,2,3

∫ 𝑘 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑡) 𝑑𝑘 (C.50)

where 𝛼(𝑎𝑡) and 𝛼(𝑎𝑡) are the 95 and 5 percentiles of the conditional (on log-TFP) wealth
distribution ∑𝑖=1,2 ∑𝑗=1,2,3 ∫ 𝑔(𝑘, 𝜀𝑖, 𝛽𝑗; 𝑎𝑡).

The confidence bands of the impulse response functions are computed by Monte-Carlo
simulation, sampling from the asymptotic distribution of parameter estimates. Namely:

1. We extract 5000 iid parameter samples Ω̃ from the asymptotic distribution 𝑁(Ω̂, 𝑉),
where 𝑉 is given in (C.42).

2. For each sample Ω̃, we solve for the equilibrium using the iterative procedure described
in SectionB, and compute the corresponding impulse response 𝐼𝑅𝜏(𝑋) as detailed above.

3. The confidence interval is given by the 5 and 95 percentile of the empirical distribution
of the 𝐼𝑅𝜏(𝑋).

D Representative-Agent Model
In this Appendix we discuss the symmetric-good, homogeneous-households version of the
model, which we label ‘Representative-Agent’ (RA) model for brevity, a terminology justi-
fied by the observation that households do not face idiosyncratic employment or preference
shocks anymore, thus being de-facto identical. The remaining elements of the model are un-
altered, including the dynamics of log-TFP 𝑎𝑡 and agents’ IES preferences. In the end, we
are discussing the continuous-time analog of the framework proposed by Cavallari and Etro
(2020).

Letting 𝑝𝑡 denote the price of the final good,26 and Γ𝑡 = (𝑟𝑡, 𝑤𝑡, 𝑝𝑡) the vector of endogenous

26We remind that we confine ourselves to a symmetric equilibrium
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state-variables, the RA solve the following consumption-savings program:

𝑉(𝐾𝑡, Γ𝑡) = sup
𝐿𝑡≥0,𝐶𝑡

𝔼
⎡⎢⎢
⎣
∫

∞

𝑡
𝑒−𝛽(𝑠−𝑡) ⎛⎜⎜⎜

⎝
log (𝑢(𝐶𝑠)) − 𝑣 𝐿1+ 1

𝜑
𝑠

1 + 1
𝜑

⎞⎟⎟⎟
⎠

𝑑𝑠
⎤⎥⎥
⎦

(D.1)

subject to the budget constraint:

𝑑𝐾𝑡 = [𝐾𝑡(𝑟𝑡 − 𝛿) + 𝑤𝑡𝐿𝑡 − 𝑝𝑡𝐶𝑡 + Π𝑡] 𝑑𝑡 (D.2)
𝐾𝑡 ≥ 𝐾 (D.3)

The notation has already been established in the text, except for the constant time preference
rate 𝛽. Notice that the final goods sector’s profits Π𝑡 are rebated to the household. Mimick-
ing the reasoning of Section 2.3, and taking into account the homogeneity of households, the
equilibrium price of the final good reads:

𝑝∗
𝑡 = 1

1 − 𝜗𝑡
, 𝜗𝑡 = −𝐶𝑡 𝑢″(𝐶𝑡)

𝑢′(𝐶𝑡)
(D.4)

where 𝐶𝑡 is the optimal consumption policy. The household solves program (D.1) taking the
dynamics of the endogenous variables Γ𝑡 and Π𝑡 as given. Since, in equilibrium, the interest
rate and wage are determined by their marginal productivity,

𝑤𝑡 = (1 − 𝛼)𝑒𝑎𝑡(𝐾𝑡/𝐿𝑡)𝛼 (D.5)
𝑟𝑡 = 𝛼𝑒𝑎𝑡(𝐾𝑡/𝐿𝑡)𝛼−1, (D.6)

the two relevant state variables for the dynamic program are capital and log-TFP. Therefore,
denoting by 𝑉(𝐾, 𝑎𝑧) the household’s value function, for 𝑧 = 1, … , 𝑛𝑎, the latter solves the HBJ
equation

⎛⎜⎜
⎝

𝛽 + ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

⎞⎟⎟
⎠

𝑉(𝐾, 𝑎𝑧) = log𝑢(𝐶∗
𝑡 ) − 𝑣(𝐿∗

𝑡 )1+ 1
𝜑

1 + 1
𝜑

+ 𝑉𝐾(𝐾, 𝑎𝑧)𝑠(𝐾, 𝑎𝑧)

+ ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

𝑉(𝐾, 𝑎𝑧2
) (D.7)

where we have used the optimal saving policy:

𝑠(𝐾, 𝑎𝑧) = (𝑟𝑡 − 𝛿)𝐾 + 𝑤𝑡𝐿∗
𝑡 − 𝑝∗

𝑡 𝐶∗
𝑡 + Π𝑡 (D.8)

= 𝑒𝑎𝑧𝐾𝛼
𝑡 (𝐿∗

𝑡 )1−𝛼 − 𝛿𝐾𝑡 − 𝐶∗
𝑡 (D.9)

Notice that in the last expression we have used the equilibrium expressions of 𝑟𝑡, 𝑤𝑡 and the
symmetric equilibrium total profits Π𝑡 = (𝑝∗

𝑡 −1)𝐶∗
𝑡 . Moreover, optimal policies 𝐶∗

𝑡 and 𝐿∗
𝑡 are

derived from the first order conditions

𝑢′(𝐶𝑡)
𝑢(𝐶𝑡)

= 𝑉𝐾(𝐾, 𝑎𝑧)𝑝∗
𝑡 , 𝐿𝑡 = (𝑤𝑡𝑉𝐾(𝐾, 𝑎𝑧)

𝑣 )
𝜑

(D.10)
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with 𝑢( ⋅ ) as in (13). Notice that 𝑝∗
𝑡 is itself a function of 𝐶𝑡, and 𝑤𝑡 is a function of 𝐿𝑡.

In the numerical solution of the model, we noticed that some care must be taken in order
to insure a robust convergence to equilibrium, in accordance with the assumption that the
agent takes as exogenously given factor prices (𝑤𝑡 and 𝑟𝑡), good prices (𝑝∗

𝑡 ) and redistributed
profits Π𝑡, when solving the consumption-saving problem. The algorithm is as follows:

1. At step 0, guess generic functions 𝑟0(𝐾, 𝑎𝑧), 𝑤0(𝐾, 𝑎𝑧), 𝑝0(𝐾, 𝑎𝑧), and Π0(𝐾, 𝑎𝑧)

2. At step 𝑛, solve the HBJ equation (D.7) numerically using a finite-difference upwind
scheme with time iteration, using as input 𝑟𝑛−1(𝐾, 𝑎𝑧), 𝑤𝑛−1(𝐾, 𝑎𝑧), 𝑝𝑛−1(𝐾, 𝑎𝑧), and
Π𝑛−1(𝐾, 𝑎𝑧) The procedure is a straightforward adaptation of that outlined in Appendix
C.1. Notice that (D.8)must be used for the savings function, and not (D.9). Let𝐶𝑛(𝐾, 𝑎𝑧)
and 𝐿𝑛(𝐾, 𝑎𝑧) denote the optimal consumption and labor policy just obtained, and use
them in expressions (D.4), (D.5) and (D.6) to define ̃𝑝𝑛(𝐾, 𝑎𝑧), 𝑤̃𝑛(𝐾, 𝑎𝑧) and ̃𝑟𝑛(𝐾, 𝑎𝑧),
respectively. Also, set Π̃𝑛(𝐾, 𝑎𝑧) = ( ̃𝑝𝑛 − 1)𝐶𝑛.

3. Set
𝑥𝑛(𝐾, 𝑎𝑧) = 𝜔𝑥𝑛−1(𝐾, 𝑎𝑧) + (1 − 𝜔) ̃𝑥𝑛(𝐾, 𝑎𝑧)

where 𝑥 is any of 𝑝∗, 𝑤, 𝑟 and Π.27

4. Iterate until 𝑥𝑛+1 ≈ 𝑥𝑛 (according to some norm-based convergence criteria) point-wise
for every 𝐾 and 𝑎𝑧.

The parameter set we use in every numerical exercise is obtained with a combined cali-
bration and estimation procedure very similar to the heterogeneous-agents’, described in Ap-
pendix C.2. In the absence of employment and preference shocks, the parameter vector to be
estimated by SMM is Ω = (𝜌𝑎, 𝜎𝑎, 𝜑, 𝛾, 𝜎). Clearly, the set of moment conditions now excludes
those pertaining the distribution of wealth. Notice that the SMM estimation now entails sim-
ulating also a capital trajectory by Euler discretization.

Similarly, impulse response functions are also obtained as in Appendix C.3, with the ex-
ception that expectations of integrated future policy values are obtained by Feyman-Kac the-
orem, solving by finite-difference a system of linear PDEs identical to C.34, excluding time-
preference and employment state variables, and substituting consumptionwith any policy we
might be considering.

Given that estimation and impulse-responses are obtained by adapting familiar proce-
dures, we omit further details.

In Figure 2, we also report the stationary density of capital conditional on the lowest or
highest aggregate log-tfp states, obtained using SMM parameter estimates. It is easy to show
that this density satisfy the following Kolmogorov Forward equation:

0 = − 𝑑
𝑑𝑘 [𝑔(𝑘; 𝑎𝑧)𝑠(𝑘, 𝑎𝑧)] + ∑

𝑧2≠𝑧
𝜆𝑎

𝑧𝑧2
𝑔(𝑘; 𝑎𝑧2

) − ∑
𝑧2≠𝑧

𝜆𝑎
𝑧𝑧2

𝑔(𝑘; 𝑎𝑧) (D.11)

1 = ∫ 𝑔(𝑘; 𝑎𝑧)𝑑𝑘 𝑧 = 1, … , 𝑛𝑎 (D.12)

27𝜔 close to 1 guarantees convergence, albeit slowly.
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Again, we solve this system of differential equations numerically by adapting the approach
described in Appendix C.1.2, hence we omit further details.

E Additional Material

E.1 Martingale Solution of Household Consumption-Saving Problem
In SectionA.1wementioned the possibility of solving the individual consumption-investment
approach using martingale methods. This can be accomplished with the methodology first
developed in He and Pagès (1993), who extend the martingale approach of Cox and Huang
(1989) to the case of labor income and nonnegative wealth constraints. The static formulation
of problem (5) reads:

𝑉(𝑘𝑡, 𝜀𝑡, 𝛽𝑡, Γ𝑡) = sup
𝑙𝑡≥0,𝑐𝑡

𝔼𝑡
⎡⎢⎢
⎣
∫

∞

𝑡
𝐵𝑡,𝑠

⎛⎜⎜⎜
⎝
log𝑢(𝑐𝑠) − 𝑣 𝑙1+ 1

𝜑
𝑠

1 + 1
𝜑

⎞⎟⎟⎟
⎠

𝑑𝑠
⎤⎥⎥
⎦

(E.1)

𝔼𝑡 [∫
∞

𝑡
𝜉𝑡,𝑠 𝑝𝑠𝑐𝑠] ≤ 𝑘𝑡 + 𝔼𝑡 [∫

∞

𝑡
𝜉𝑡,𝑠 𝑤𝑠𝑙𝑠𝜀𝑠] (E.2)

where the subjective discount factor and the state-price density are, respectively

𝐵𝑡,𝑠 = 𝑒− ∫𝑠
𝑡 𝛽𝑢 𝑑𝑢 ⇒ 𝑑𝐵𝑡,𝑠 = −𝐵𝑡,𝑠𝛽𝑡𝑑𝑡

𝜉𝑡,𝑠 = 𝑒− ∫𝑠
𝑡 (𝑟𝑢−𝛿) 𝑑𝑢 ⇒ 𝑑𝜉𝑡,𝑠 = −𝜉𝑡,𝑠(𝑟𝑡 − 𝛿)𝑑𝑡

and the state constraint is 𝑘𝑡 ≥ 𝑘.
He and Pagès (1993) characterize the solution to this problem as follows:

𝑉(𝑘𝑡, 𝜀𝑡, 𝛽𝑡, Γ𝑡) = inf
𝑋𝑡

sup
𝑙𝑡≥0,𝑐𝑡

𝔼𝑡
⎡⎢⎢
⎣
∫

∞

𝑡
𝐵𝑡,𝑠

⎛⎜⎜⎜
⎝
log𝑢(𝑐𝑠) − 𝑣 𝑙1+ 1

𝜑
𝑠

1 + 1
𝜑

⎞⎟⎟⎟
⎠

𝑑𝑠
⎤⎥⎥
⎦

(E.3)

𝔼𝑡 [∫
∞

𝑡
𝜉𝑡,𝑠𝑋𝑠 𝑝𝑠𝑐𝑠 𝑑𝑠] ≤ 𝑘𝑡 + 𝔼𝑡 [∫

∞

𝑡
𝜉𝑡,𝑠𝑋𝑠 𝑤𝑠𝑙𝑠𝜀𝑠 𝑑𝑠] (E.4)

where 𝑋𝑡 is a nonnegative and nonincreasing process interpreted as lagrange multiplier for
the infinite sequence of borrowing constraints. Define 𝜁𝑡,𝑠 = 𝜉𝑡,𝑠𝑋𝑠. Applying Lagrangian
Theory, consider the convex conjugate:

̃𝑢(𝜁𝑡,𝑠/𝐵𝑡,𝑠; 𝜀𝑠) = sup
𝑙𝑠≥0,𝑐𝑠

⎡⎢⎢
⎣
𝐵𝑡,𝑠

⎛⎜⎜⎜
⎝
log𝑢(𝑐𝑠) − 𝑣 𝑙1+ 1

𝜑
𝑠

1 + 1
𝜑

⎞⎟⎟⎟
⎠

− 𝜁𝑡,𝑠(𝑝𝑠𝑐𝑠 − 𝑤𝑠𝑙𝑠𝜀𝑠)
⎤⎥⎥
⎦

(E.5)

=

⎧{{
⎨{{⎩

𝐵𝑡,𝑠 log𝑢(𝑓 (𝑝𝑠𝜁𝑡,𝑠/𝐵𝑡,𝑠)) − 𝜁𝑡,𝑠𝑝𝑠𝑓 (𝑝𝑠𝜁𝑡,𝑠/𝐵𝑡,𝑠)
+ 1/𝜑

1+1/𝜑(𝜁𝑡,𝑠𝑤𝑠)1+𝜑(𝐵𝑡,𝑠𝑣)−𝜑 if 𝜀 = 1

𝐵𝑡,𝑠𝑓 (𝑝𝑠𝜁𝑡,𝑠/𝐵𝑡,𝑠) − 𝜁𝑡,𝑠𝑝𝑠𝑓 (𝑝𝑠𝜁𝑡,𝑠/𝐵𝑡,𝑠) if 𝜀 = 0
(E.6)
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where 𝑓 ( ⋅ ) is the inverse function of 𝑢′( ⋅ )/𝑢( ⋅ ). Problem (E.3) then admits the dual formu-
lation

𝑉(𝜁; 𝜀𝑡, 𝛽𝑡) = inf
𝑋𝑡

𝔼𝑡 [∫
∞

𝑡
̃𝑢(𝜁𝑡,𝑠/𝐵𝑡,𝑠; 𝜀𝑠) 𝑑𝑠] (E.7)

Assuming that 𝑋𝑡 is absolutely continuous, so that 𝑑𝑋𝑡 = −𝑋𝑡𝜓𝑡𝑑𝑡, for 𝜓𝑡 ≥ 0, and

𝑑𝜁𝑡,𝑠 = −𝜁𝑡,𝑠(𝑟𝑡 − 𝛿 + 𝜓𝑡)𝑑𝑡,

the Hamilton-Bellman-Jacobi equation satisfied by the dual value function 𝑉 is:

inf
𝜓

[ ̃𝑢(𝜁/𝐵𝑡,𝑠; 𝜀𝑠) − 𝑉𝑧(𝜁 ; 𝜀𝑠, 𝛽𝑠)𝜁𝜓 + 𝒜𝑉(𝜁; 𝜀𝑠, 𝛽𝑠)] = 0 (E.8)

where 𝒜 ⋅ is the infinitesimal generator of the processes (𝜁𝑡, 𝜀𝑡, 𝛽𝑡) (excluding the 𝜓−term in
the drift of 𝜁). This is indeed a singular control problem, which can be alternatively charac-
terized as the (system of) variational inequality:

min ( ̃𝑢(𝜁/𝐵𝑡,𝑠; 𝜀𝑠) + 𝒜𝑉(𝜁; 𝜀𝑠, 𝛽𝑠), −𝑉𝑧(𝜁 ; 𝜀𝑠, 𝛽𝑠)) = 0 (E.9)

In our framework this approach does not yield a fully explicit characterization, sincewewould
still need to solve numerically for the free-boundary of the 𝜁 state variable, where the state
constraint 𝑘𝑡 ≥ 𝑘 becomes binding and the state variable 𝜁 is reflected in the continuation
region. In other contexts though, such a CES subutility, the outcome might be different.
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