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Abstract

We study an equilibrium model that maps the characteristics of the network connect-

ing firm-specific risks to the cross-section of expected returns. Through the ‘network’

firms transfer a distress state to other firms’ fundamentals in a directed and timely

manner. We show that ‘central’ firms, active at transferring but immune to trans-

ferred distress, have lower P/D ratios and higher expected returns. We confirm this

prediction using a newly proposed measure of network centrality, estimated on corpo-

rate earnings. We also argue that network centrality provides a natural explanation

for the predictive power of the size and book-to-market firm characteristics.
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I. Introduction

This paper studies the effects on the cross-section of expected returns of a dependence struc-

ture relating firm-specific cash-flow risks. We call such a dependence structure ‘network’.

An increasing literature investigates the role of interconnections between different firms and

sectors, functioning as a potential propagation mechanism of idiosyncratic shocks through-

out the economy. Acemoglou et al. (2011) use network structure to show the possibility that

aggregate fluctuations may originate from microeconomic shocks to firms. Such a possibility

is usually disregarded in standard macrofinance models, in light of a “diversification argu-

ment”: as argued by Lucas (1977), among others, such microeconomic shocks would average

out and thus have negligible aggregate effects, and little impact on asset prices. For instance,

an investor holding a diversified portfolio of firms in the symmetric network of Figure 1a

would not be exposed to firm specific shocks as the number of firms grows large.

1 2 3 N 1

2

3

4

5

Figure 1a Figure 1b

In contrast, in the network of Figure 2a shocks to the central firm 1 propagate to the rest

of the network: even if an investor were to hold an arbitrarily large number of stocks in the

portfolio, she would still be exposed to shocks of firm 1. Similarly, in the network of Figure

2b she would be exposed to shocks of the N central firms. The centrality of a firm is then

intuitively important for the cross-section of asset prices.
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The idea of the existence of an asymmetric network structure has been at the heart

of much of policy decisions in the U.S. and Europe during the 2008 Credit Crisis, when

several financial firms have been rescued to avoid adverse effects to the rest of the economy.

Substantial regulatory effort is being devoted to understand the linkages across firms and

sectors and limit excessive propagation of shocks. In this paper, we concentrate on the main

asset pricing implication of such linkages, the cross-section of expected returns.

We study a Lucas economy with multiple trees, generating dividends which follow a

Markov chain in continuous time, whose transition probabilities depend on other firms’

dividend states in an heterogeneous manner. This allows to have a pairwise dependence

structure, or network, in which firms propagate and/or absorb shocks differently. Firms’

connectivity characteristics are linked to the cross-section of expected returns in an interest-

ing and non apparent way. We show that the equilibrium risk premium is positively related

to the extent that the firm is actively connected to the rest of the network, in that it can

transfer its own shocks while being relatively insulated from others’ (as firm 1 in Figure 2a).

Fundamental shocks to such a firm lose soon their idiosyncratic nature and evolve into a

systematic factor leading the business cycle. Almost tautologically, the marked exposition

to their own risk makes active, or central firms highly pro-cyclical relative to passively con-

nected ones (such as firm 2 in Figure 2a), justifying a greater risk premium. We propose a

reduced-form univariate measure of network connectivity, or “Dynamic Centrality”, with the
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purpose of capturing the degree of centrality of a firm and unveil the structural link between

network characteristics and the cross-section of expected returns: the larger the dynamic

centrality, the larger the expected return and the smaller the P/D ratio.

We use earnings data to estimate the characteristics of the network structure by max-

imum likelihood. We aggregate firms in portfolios by mimicking Fama and French (1992)

methodology and find that in Fama-McBeth regressions, after controlling for market beta,

size and book-to-market, the slope of the dynamic centrality characteristic is positive and

significant at standard confidence levels. A simulation study confirms that this result is

robust to estimation error. We build a centrality factor mimicking portfolio, long (short) the

25% of stocks with largest (smallest) dynamic centrality. Using the returns on such a portfo-

lio, labeled cmp factor, to fit the centrality risk premium through standard APT regressions,

we find nonnegligible and heterogeneous centrality prices of risk. For instance, on 10 book-

to-market sorted portfolios, the centrality annual risk premium ranges from 0 to 15.3%. We

also map firms’ centrality to more direct characteristics that have been long related to the

cross-section of returns, such as size and book-to-market. High book-to-market (value) stocks

are unarguably more central than low book-to-market (growth) stocks, and the returns on

a portfolio long the top and short the bottom quintile of the book-to-market distribution

have a sizable and highly significant centrality premium component. We interpret this as a

micro-foundation of the debated distress-related explanation for the value premium: value

firms are systematic bad performers during economic downturns, thus mandating higher

premia, because they are inherently central, and as such the catalysts of systematic distress.

Moreover we find quite intuitive that low book-to-market firms appear less central in the

network: 1) if their market equity value is mostly growth opportunities, a present distress

shock has limited effect on other firms, at least in the short run. 2) Conversely, to put a

growth opportunity in place, especially to finance it, they need external links, hence they

are vulnerable to induced distress also in the short run. In terms of firm size, while in an
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input-output technological network a large firm is typically central , in a dynamic network

linking firms’ fundamentals it may not be: we find small firms significantly more central at

the monthly horizons, while the opposite holds at quarterly horizons. This has an intuitive

explanation : 1) large firms can absorb fundamental shocks more effectively in the short run,

avoiding on average quick propagation to their peers, while tend to suffer the endurance of

distress. 2) In the longer run, many small firms are of recent creation and less are survivals

to a durable distress.

Related Literature. This paper is related to three streams of the literature. A first

stream studies endowment economies with multiple dividend paying assets (orchards).

Cochrane, Longstaff, and Santa-Clara (2008), and Martin (2011) show that even if dividends

have iid increments, simple market clearing can give rise to rich asset pricing implications.

Santos and Veronesi (2009) study a multiple-trees economy where the SDF implied by nonlin-

ear external habit formation preferences counterfactually generates higher expected returns

for stocks with high price-dividend ratios – i.e. a ‘growth premium’ – if firms/trees are al-

lowed to differ in their expected dividend growth, but not in their cash-flow risk,1. In these

models, cross-sectional heterogeneity in asset prices is driven by the properties of trees’ share

sizes, which are responsible for systematic risk. Our main departure from this literature is in

the emphasis on dynamic network connectivity, which allows us to explore causality among

firms’ fundamentals, rather than simple covariation. Lettau and Wachter (2007) advocate

the importance of weak or positive covariance between the market price of risk and dividend

shocks, in order to obtain a ‘value premium’. Our contribution is to show both theoretically

and empirically a structural channel independent of preferences that is consistent with some

well studied features of the cross-section of expected returns.

A second stream of the literature studies the role of sectoral shocks in macro fluctua-

tions; examples include Horvath (1998, 2000), Dupor (1999), Shea (2002), and Acemoglu,

1 That is, in the covariance between consumption growth and their dividend growth
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Carvalho, Ozdaglar, and Tahbaz-Salehi (2011). This literature focuses on shock propagation

in static networks. We address the asset pricing implications of sectoral shocks in asymmet-

ric networks, and to this end we introduce dynamics in the mechanism of shock propagation.

Our network connectivity is also related to the role played by firm size distribution in Gabaix

(2011), who shows that firm-level idiosyncratic shocks translate into aggregate fluctuations

when the largest firms contribute disproportionally to aggregate output. While this could be

the case in our network structure, we emphasize the importance of connectivity in networks

of fundamentals.

A third strand of the literature studies the role of idiosyncratic risk in asset pricing.

Ang, Hodrick, Xing, and Zhang (2006), show that idiosyncratic volatility risk is priced in

the cross-section of expected stock returns, a regularity which is not subsumed by size,

book-to-market, momentum, or liquidity effects.

The article is organized as follows. Section II describes the model. Section III derives

security prices. Section IV studies risk premia, relating their cross-sectional behavior to

network connectivity. Section V introduces a measure of network centrality. Sections VI is

devoted to the empirical analysis, and Section VII concludes. Proofs are in the Appendix,

and a separate Online Appendix collects derivations and additional results not reported in

the paper for brevity.

II. The Economy

In an infinite-horizon, pure exchange Lucas economy a representative agent maximizes Con-

stant Relative Risk Aversion utility of intertemporal consumption.

U0 = E

[∫ ∞

0

e−δs C
1−γ
s

1− γ
ds

]
. (1)
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γ and δ are the relative risk aversion coefficient and the subjective discount rate, respectively.

The opportunity set of the investor consists of a locally risk-less security in zero net supply,

with rate of return rt (the interest rate), and N risky securities in positive net supply, each

paying a stochastic dividend stream xi
t, i = 1, . . . , N . In equilibrium aggregate consumption

is equal to the sum of the dividends: Ct =
∑N

i=1 x
i
t. We will often refer to trees as ‘firms’.

xi
t is a two-state Markov chain in continuous time, with states xi and xi, xi > xi. We label

xi the ‘distress’ state, and introduce the binary variable H i
t , which takes value 1 if firm i is

in distress state at time t, and 0 if it is not. Formally, security i’s dividend evolves as:

dxi
t

xi
t

=
xi − xi

xi
(1−H i

t−)dH
i
t −

xi − xi

xi
H i

t−dH
i
t (2)

An innovation dH i
t = 1 denotes a distress event of firm i, while dH i

t = −1 denotes a recovery

event. λi
t (η

i
t) denotes the distress (recovery) intensity, that is, the probability of a negative

(positive) dividend jump during next time instant, provided the tree is not (the tree is) in

distress.

We refer to a network as a dependence structure that acts on firms’ dividends on a finite

time horizon. In particular, the idiosyncratic shocks dH i
t are by definition instantaneously

independent across trees: we introduce connectivity by assuming that the intensities depend

on the state of distress of the other firms: λi(Ht), η
i(Ht).

2 Thus the likelihood of distress or

recovery during the next small time interval is positively or negatively affected by the state

of distress of directly connected trees. If intensities are constant, firm-specific risks are also

unconditionally independent, and the economy is the disconnected network of Figure 1a. In

general, the functional forms λi( · ) and ηi( · ) accommodate any asymmetric form of mutual

influence among firms’ distress. Thus the term ‘network’ is justified by the atomistic nature

of the dependence structure, which is a pair-specific transfer mechanism of fundamental

shocks. Our network connectivity has two distinctive features:

2When no confusion can arise, we adopt the notation Ht = (H1
t , . . . , H

N
t ).
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i) It is inherently dynamic, because it adopts the likelihood of future distress/recovery

shocks, rather than immediate shocks, as transmission device, thus allowing a timely

speed of propagation. This property is important in our context, which is concerned

with the network determinants of the cross-section of returns, as it accounts for different

predictability features at different time horizons. Indeed, a static network is recovered

in our setting by assuming variations of λi(Ht) and ηi(Ht) (across different states)

large enough to lead to almost immediate propagation.

ii) It emphasizes distress causality rather than simple distress covariance, as the state-

dependence of the intensities allows to identify precisely the directionality of the shock

transmission.

A highly central firm, such as Firm 1 in the example of Figure 3, is embedded in this

context by: i) having its distress increase other firms’ distress intensities: λj(H1
t = 1) >

λj(H1
t = 0), j = 2, 3. If λj(H1

t = 1) = ∞, Firm 1’s distress propagates immediately. ii)

Letting its distress intensity be insensitive to others’ distress: λ1(Hj
t = 1) ≈ λ1(Hj

t = 0).

Figure 3 reports as additional example a vertically integrated value chain, where shocks flow

more quickly downstream: Firm 1 is upstream in terms of cash-flow shocks, while Firm 3 is

downstream, so that λ2(H1
t = 1) > λ1(H2

t = 1) and λ3(H2
t = 1) > λ2(H3

t = 1).

Sector 1 Dynamic Centrality Vertical Integration
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III. Security prices

The network structure gives rise to interesting predictions for both price-dividend ratios and

risk premia. We concentrate on the cross-sectional predictability of expected returns, with

the purpose of deriving testable implications.3

Although the network structure can be general, it is possible to obtain closed-form solu-

tions for security prices.

Proposition 1. Let H denote a generic realization of Ht, and P i(H) the price of the claim

to the i−th endowment stream, xi
t. We have:

P i(H)

xi
t

= 1
′

HV
i, where Vi =

(
a−AH

)−1
Ci (3)

1H is a vector with 2N entries – as many as the total number of states for Ht – with 1 in

the entry corresponding to H and zero elsewhere. a = δI2N , with I2N the 2N−dimensional

identity matrix. The Markov transition matrix of Ht, A
H, and the vector Ci are reported in

the Appendix.

The equilibrium price-dividend ratio satisfies a multidimensional stochastic Gordon growth

formula, and depends on the state variable Ht, the vector that tracks all trees’ state of dis-

tress. In particular, Vi is the vector of P/D ratios conditional on each of the 2N realizations

of Ht.
4 Vi is better understood by rewriting it as:

Vi = lim
T→∞

∫ T

t

exp(AH(s− t))︸ ︷︷ ︸
1

e−δ(s−t)Ci

︸ ︷︷ ︸
2

ds (4)

Term 2 is the conditional gross dividend growth of the tree discounted by the intertemporal

3Additional implications can be derived for the behavior of aggregate consumption, interest rates and of
the market prices of risk. These properties are reported in the Online Appendix.

4Ht takes 2N possible values, ranging from a combination where no tree/firm is in distress, Hi
t = 0, to

one where all are in distress, Hi
t = 1, i = 1, 2, . . . , N
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marginal rate of (aggregate) consumption substitution, that is, by the equilibrium pricing

kernel. Term 1 is the transition probability matrix of the state variable Ht, from time t to

s.5 Therefore Vi amounts to the expectation of cumulative discounted dividend growth, in

the infinite horizon limit, conditional on any possible initial distress state H. The influence

of network connectivity on the cross-section of P/D ratios is embedded in Term 1, as present

distress states affect the probabilities of future distress or recovery events. To gauge this

effect, it is convenient to consider a disconnected economy first, and then add a network

structure:

1) Suppose there is no connectivity, so that jump intensities do not depend on H. Any

distress event leads to an expected increase in dividend growth for the affected asset,

hence consumption growth in equilibrium, because a recovery is eventually foreseen.

In this case, low state prices (future marginal utility) imply a reduced desire to invest

in any risky assets in order to substitute consumption intertemporally, so that all P/D-

ratios drop. The higher the distress intensity λ and dividend share of the distressed tree,

the more pronounced the negative spill-over effect, because the increment of expected

consumption growth is maximal.

2) When trees are part of a network structure, those connected to the distressed one

will experience an increase in their distress jump intensity. Fears of distress contagion

jeopardize consumption recovery perspectives, hence the agent may want to invest in

securities that can hedge the lower expected consumption growth. Pro-cyclical assets

are bad in this role, thus their demand will drop. These are firms which are able

to spread their own distress risk, but relatively immune from distress contagion: the

‘exogenously connected’ firms. An exogenous, or central, firm lays in distress when

aggregate consumption is systematically low, because of its ability to cause generalized

distress. Its dividends are highly correlated with aggregate consumption. The situation

5See the Appendix for details. exp( · ) in this expression in a matrix exponential.
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is different for firms that are less central, hence more endogenous to the shock and have

modest or negative correlation with future aggregate consumption: their demand will

rise, or it will diminish less, and so their P/D-ratios.

It is intuitive that the degree of centrality (i.e. whether a firm is N = 1 or N = 4 in Figure

2a) of a firm determines its location in the cross-section of P/D ratios. Being a property of

the dependence structure linking firms’ fundamentals, centrality is not a directly observable

characteristic. Our strategy is then to identify a reduced-form indicator that captures its

distinctive property: exogeneity in the fundamental shock transmission. We first discuss the

cross-section of model risk premia.

IV. Risk premia

It is convenient to decompose the equilibrium risk premium of the i−th security into a

premium for recovery risk (µi
η) and a premium for distress risk (µi

λ). Our attention is focused

on the latter, although the same qualitative intuition applies to the recovery premium.

Proposition 2. Let µi
t denote the equilibrium risk premium of the i−th security. We have:

µi
t = µi

λ + µi
η (5)

µi
λ =

N∑

j=1

(1−H
j
t )
[
1− θ

j
tR

i(H−j)
]
λ
j
t . (6)

µi
η =

N∑

j=1

H
j
t

[
1− θ

j
tR

i(H+j)
]
η
j
t . (7)

H−j (H+j) coincides with the current state H, except for firm j (not) in distress. θ
j
t is the

market price of distress/recovery risk, reported in (22) of the Appendix.

Ri(H−j) =
P i(H−j)

P i(H)
, Ri(H+j) =

P i(H+j)

P i(H)
(8)

11



are the gross returns on security i triggered by a distress or, respectively, a recovery event of

security j.6 Security prices P i(H−j) and P i(H), conditional to states H−j and H, respec-

tively, are explicitly available from (3) of Proposition 1.

The distress risk premium (6) is easy to interpret. θjtλ
j
t is the risk-neutral distress intensity

of firm j. It is greater than the objective intensity λj: the market price of distress risk, θjt > 1,

can thus be interpreted as the risk adjustment per unit of (instantaneous) probability that

the agent requires as compensation for the risk of distress.7 If the event materializes, security

i responds with a gross returns Ri(H−j). Thus the distress risk premium (6) is a weighted

average of the risk adjusted returns on security i that would emerge if any tree had a distress,

with the likelihoods of distress as weights. Again, the network determinants of the cross-

section of risk premia are hard to capture at visual inspection, as they are embedded in

the transition matrix of state variables. However expression (6) suggests that we can rely

on our discussion of P/D ratios in Section III for a qualitative assessment. In particular,

without network connectivity any distress shock triggers negative security returns (or gross

returns smaller than one) for all the cross-section. The distress premium is at its highest.

Network connectivity reshapes the cross-section consistently with the degree of centrality of

each asset: central firms such as Firm 1 in Figure 2a have their price react relatively worse

(with a smaller gross return) to a distress shock, for their inherent ineptitude to hedge the

further dividend growth loss that network propagation of the distress generates. Central

firms in a network structure will then have unconditionally higher risk premia.

A. Mapping firms’ centrality to risk premia

To focus on the role of network structure, this discussion abstracts from dividend share

size and assumes that dividend payments are homogeneous across firms. In a disconnected

network such as Figure 1a, where trees’ intensities are constant, the cross-section of equity

6 We report them in expression (29) of the Appendix for completeness.
7It is smaller than one in case of recovery event. See the Online Appendix for details.
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premia is then determined solely by the relative magnitude of distress intensities: the lower

the latter the lower the risk premium, for finite number of firms N . The reason is that in this

case the firm pays dividends in low aggregate consumption states. Moreover, as N becomes

arbitrarily large, the market portfolio can diversify away firm-specific shocks, so that these

will not bear any risk premium. In a ‘star’ network structure the situation is different. In

Figure 2a, Firm 1 is ‘central’, because its distress jump increases all other distress intensities,

but the converse is not true. Moreover, all other firms are disconnected among each other,

thus unarguably ‘noncentral’. Since Firm 1 is dominant, it is a source of systematic risk,

because even for N → ∞ the market portfolio is not able to diversify away its firm-specific

risk. This result holds more generally: networks with a large cross-sectional dispersion in

centrality do not satisfy the two fund separation property and firm-specific risk matters in

equilibrium asset prices. Online Appendix C reports detailed results about the (failure of)

asymptotic two-fund separation.

With their apparent distribution of firm centrality, ‘star’ networks are ideal candidates to

formalize the link between centrality and the cross-section of returns. In particular, letting

distress and recovery intensities coincide across noncentral firms, we can isolate centrality as

the sole determinant of risk premia, because absent connectivity there would be no cross-

sectional variation of expected returns at all. In this context, the next Proposition shows

that Firm 1 has the highest risk premium when N → ∞ and firms are not currently in

distress, hence their risk premia are directly comparable.

Proposition 3. Consider a ‘Star’ network economy where a distress of Firm 1, the central

firm, increases the other distress intensities by a factor k. Assume that Assumption 1 and

Assumption 2 in the Appendix are satisfied. There exists a k∗, dependent on firm character-

istics, such that as N gets arbitrarily large and k > k∗, Firm 1 has a higher risk premium

than any noncentral Firm N, conditional on any present state Ht where both firms 1 and N

are not in distress.
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The intuition is that Firm 1’s distress, by increasing other firms’ chances of distress, leads

the economy towards a low aggregate consumption state. Since firms accrue to distress when

Firm 1 lays in it, the latter displays highly cyclical pay-outs. The only chance for the central

firm of being less or equally exposed to the trough it creates, is (a) to have superior recovery

ability and pay-off normal dividends while most are still trapped in distress and the discount

factor (marginal utility) is large, or (b) to cause immediate distress propagation, in which

case all firms have the same loading on this factor. Concerning the last observation, a key

assumption of Proposition 3 is:8

kλ (1−Nkλ∆−Nη∆) > (1−Nλ∆−Nη∆)λ (9)

for small ∆. The left-hand-side of (9) denotes the approximate probability of distress and

permanence in this state over the next small time interval, for a noncentral firm, when Firm

1 is in distress, and the economy size is large.9 This has to be larger than its counterpart

when Firm 1 is not in distress, for the latter to be riskier. Intuitively, an excessive strength of

distress propagation – i.e. very large value of k – could not allow to distinguish significantly

between central and noncentral firms, with regard to the correlation between their distress

state and economic fundamentals (aggregate consumption, in our model). Indeed, with

immediate propagation (infinite k) there cannot exist a state where the central firm is in

distress and some other firm is not. On the other hand, insufficient propagation – i.e. k < k∗

– could also imply, for the opposite reason, economic fundamentals that are not significantly

worse during Firm 1’s distress compared to others’.

8See Assumption 2 in the Appendix. (9) reduces to expression (35).
9In which case the number of firms in distress or not is proportional to N .
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V. An Indicator of Firm Centrality

The network literature has proposed several indicators to describe the connectivity structure

of a static network. “Bonacich centrality ”and “betweenness”are just a few examples.10 We

introduce a measure of dynamic centrality with the following properties: i) the measure cap-

tures centrality in the active connectivity, or distress causality sense, that we have discussed

above as the most important network characteristic for expected returns. ii) The measure

can be readily estimated and used in asset pricing tests.

Let DCτ
ij denote the τ -deferred cross-correlation of distress between firm i and firm j:

DCτ
ij =

P [Hj
t+τ = 1, H i

t = 1]− P [Hj
t+τ = 1]P [H i

t = 1]√
P [Hj

t+τ = 1]P [H i
t = 1](1− P [Hj

t+τ = 1])(1− P [H i
t = 1]))

(10)

DCτ
ij is the unconditional correlation between the events that Firm i is in distress at time t

and that Firm j is in distress τ periods afterwords.11 The joint probability at the numerator

can also be written as

P [Hj
t+τ = 1, H i

t = 1] = P [Hj
t+τ = 1|H i

t = 1]P [H i
t = 1] (11)

DCτ
ij captures the distress causality of Firm i on Firm j, and it is naturally related to the

statistical concept of exogeneity. In a two-firm economy, if DCτ
ij > DCτ

ji, Firm i demands a

higher expected return, because its distress propagates to Firm j more systematically than

the opposite. Firm i is ‘actively’ connected to the rest of the economy, and because of this

property its distress status is strongly cyclical. It should be noted that although (10) is

a pair-wise indicator, it takes into account the global network properties, as probabilities

depend on the joint distribution of the vector H. Moreover, since shocks in our economy

10We refer to the monograph Newman (2010) for an overview of the literature.
11Expressions for these probabilities are in Online Appendix A.
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propagate dynamically, depending on the extent of amplification or absorption through the

network structure, the DCτ
ij can vary sharply in the horizon dimension τ . The net deferred

correlation

DCτ
ij −DCτ

ji (12)

provides an indication of the mutual ‘causality gap’ between firms i over j. We define a

stock’s ‘Dynamic Centrality’ by aggregating at stock level all the net pairwise correlations :

DC
τ

i =
N∑

j=1,j 6=i

(
DCτ

ij −DCτ
ji

)
(13)

A large DC
τ

i intuitively indicates a firm that is central in the network: its shocks are mainly

transferred to other firms but it is less exposed to other firms’ shocks. Consider for instance

Figures 1a and 1b. In the former, since firms are disconnected and pairwise deferred corre-

lations (10) are zero, Dynamic Centrality vanishes for all. The same is true for the latter if

symmetry among firms is exact, and pairwise correlation measures (10) coincide. In Figure

2a, instead, Firm 1 has highest centrality, as DCτ
1j > 0, while DCτ

j1 = 0.

VI. Empirical Analysis: Network Structure in Conditional

Fama-McBeth Regressions

The theory links a firm characteristic, such as centrality in a network economy, to the cross-

section of expected returns. In the previous section we have proposed an empirical measure

of this characteristic. This Section explores the empirical relation between the cross-section

of expected returns and Dynamic Centrality at the individual stock level.
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A. Data and Portfolio Construction

We merge two main datasets. The first updates the Fama-French (1992) sample of portfolio

returns double sorted according to market beta and size characteristics. We use these port-

folios to populate the nodes in the network. The second dataset collects the earnings of each

node (portfolio), which are used to estimate the network connectivity. We employ corporate

earnings (Compustat EPSPX) rather than dividends in the estimation because the acknowl-

edged smoothness of firms’ pay-out policies may mask the propagation of fundamental shocks

in the network. Further details are in the next Section.

We follow Fama and French (1992) and populate a set of 10×10 portfolios double sorted

according to market beta and size (the “β-size” portfolios thereafter). The data consists of

monthly stock returns on all firms listed on NYSE, AMEX and NASDAQ, with accounting

data reported in the COMPUSTAT database from 1963 to 2007. Each year we discard the

stocks in the first 5 − th percentile of the size distribution, to avoid an excessive presence

of small caps in the sample.12 We form portfolios in June and then compute value-weighted

returns from July to June of the next year. Betas of individual stocks are computed from

a time series regression of excess returns on the market excess return, for 24 to 60 of the

months preceding June of year t (included). The market equity value of individual stocks

used in the size-sorting is recorded in June of year t. The monthly market returns and

risk-free rate are from K. French.13 As in Fama and French (1992), we use the time series

of returns of a given portfolio to compute its beta, as the sum of the slopes in a time-series

regression of excess returns on contemporaneous and 1-month lagged excess market returns.

In the Fama-McBeth regressions to follow, each stock is assigned the beta of the portfolio to

which it belongs in year t, and its book and market equity values available in December of

year t−1. Thus portfolio construction and asset pricing tests are both designed to avoid any

12To this purpose, we use firms’ market equity observed in June of the corresponding year.
13‘F-F Benchmark Factors Monthly’ of K. French’s website.
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look-ahead (or contemporaneous) bias. Once stocks are assigned to portfolios, we also build

a time series of earnings and dividends at the portfolio level, as detailed in Online Appendix

B.

B. Estimation

We infer network connectivity from corporate earnings. To guarantee consistency with spec-

ification (2), we assume that earnings and dividend processes are connected by a similar

network structure. We posit the following dynamics for earnings growth:

dEi
t

Ei
t

= ui dU i
t + di dLi

t, i = 1, . . . , N. (14)

u (d) denotes a positive (negative) shocks to earnings growth, with U i
t (L

i
t) the corresponding

Poisson counting process with intensity driven by the state-variable H i
t :

E
[
dU i

t

∣∣Ft

]
=

[
ϑ
i

u(1−H i
t) + ϑi

uH
i
t

]
dt (15)

(
E
[
dLi

t

∣∣Ft

]
=

[
ϑ
i

dH
i
t + ϑi

d(1−H i
t)
]
dt
)

(16)

Since ϑ
i

j > ϑi
j, j = u, d, a state of dividend distress implies smaller (larger) intensity of

positive (negative) earnings growth.

We parameterize the network structure through the following linear specification for the

state-dependent distress intensities of portfolios:

λi(Ht) = λi
0 + λi

1

N∑

j=1

cjH
j
t i = 1, . . . , N (17)

where i is any of the beta-size sorted portfolios. Its distress intensity is λi
0 when no firm is

experiencing a distress, and it increases by cjλ
i
1 upon distress of firm j. The recovery intensity

ηi is assumed constant, hence unaffected by the network structure. Model (17) describes a
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multicentric network where all firms are connected, and the propensity of propagation, c, is

firm-specific but not peer-specific. This specification is parsimonious enough to be estimated

on the earnings dataset, and it is not restrictive, as we can think of c as the average propensity

to distress propagation of firms living in a more heterogeneous network. We estimate model

parameters with a Maximum Likelihood methodology where the distress state-variable Ht

is integrated out using its stationary distribution. No asset price information is employed at

this stage. Estimates of network parameters are used to compute the structural measure of

dynamic centrality proposed in Section V. While the asset pricing tests below are conducted

on a set of 10 × 10 beta-size sorted portfolios, the network is estimated on a set of 4 × 4

portfolios for feasibility of implementation.

C. Characteristics of Sorted Portfolios

Table I (Panel 1) reports the conditional (DC
τ

i , τ = 1m) Dynamic Centrality measures for

each beta-size portfolio, arising from direct estimation, that is, plugging parameter estimates

into expression (10).14

Insert Table I

According to this panel, the relation between centrality and both market beta and size

is erratic and pronouncedly nonlinear, also due to the coarse stratification in the double

sorting procedure. We explore the pattern by looking at the Dynamic Centrality of portfolios

sorted into deciles of one characteristic at a time. Panel 2b reports the monthly (τ = 1

month) and quarterly (τ = 3 months) Dynamic Centrality of size-sorted deciles.15 Bearing

a technological network in mind, where a firm is the nexus of its input-output linkages, one

would think of a larger cap firm as more central than a small cap. However, we find that

14Portfolio average returns are described in the Online Appendix.
15Since parameter estimates are not available on these portfolios, we obtain their centralities indirectly,

by assigning to each stock the DC
τ

i of its beta-size sorted portfolio, and then computing an equally weighted

average of the centralities in the same size decile: DC
τ

ME−i(t) =
∑

j∈ME−i

DC
τ

j

nt
, where ME − i is the i−th

size decile, and nt the number of stocks in sample in year t.
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in a network connecting firms’ fundamentals centrality has an important time dimension:

at the monthly horizon, smallest caps appear more central than largest caps, while the

opposite is true at quarterly horizon, with centrality differences between extreme deciles

highly statistically significant in both cases. This result is intuitive: at short horizons, small

firms are more suitable distress vehicles than larger firms, whose capital structure allows to

avoid a quick transfer to connected firms, thus acting as temporary buffers to slow down

distress propagation. At longer horizons instead, a small firm has more likely been recently

created than survived to a durable distress, while any capital cushion of pre-existing large

firms appears less adequate, which justifies the larger quarterly Dynamic Centrality of the

latter group.

When we repeat the exercise on book-to-market sorted portfolios (Panel 2c), we find that

highest book-to-market firms are undoubtedly more central than lowest ones at both monthly

and quarterly horizons, as the difference of centralities is positive and highly statistically

significant. A motivation of the value-premium known at least since Fama and French

(1992), that value firms are consistent bad performers in periods of systematic downturns, is

micro-founded by our model as a distress causality story: high book-to-market firms are the

main catalysts of the systematic distress, because mostly prone to transfer a bad fundamental

shock. We find intuitive that smaller centrality is associated to smaller book-to-market. If

the market equity value embeds mainly growth perspectives, a firm’s present distress is also

less transferable to other firms, at least in the short run. Conversely, putting in place a

growth project, especially financing it, requires tight links with other firms also in the short

run, which implies that the firm is vulnerable to others’ distress. According to this view

the centrality gap between value and growth firms should be smaller at longer forecasting

horizons, when part of growth projects are in place, so that the firm has developed ‘outgoing

connections’ to transfer its distress. Indeed in Panel 2c the difference between quarterly

centralities is 146% (in absolute terms) of the centrality of lowest book-to-market firms, in
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constrast with the 83% of the monthly horizon.

The next Section further explores this issue, but first it tests the relation between the

centrality characteristic and the cross section of returns at the individual stock level.

D. Fama-MacBeth Regressions

We closely follow Fama and French (1992) and use the whole cross section of individual

stock returns available on a given month. For monthly observations between July of year

t and June of year t + 1, we assign to a given stock its size (ME) and book-to-market

(BE/ME) as reported on December of year t− 1, and the post ranking beta of the portfolio

to which it belongs: post-ranking betas are portfolio market betas obtained from a time

series regression on the whole sample. The centrality matching procedure mimics the beta

matching procedure, so that a stock is assigned the centrality measure of its portfolio. We use

monthly Dynamic Centrality in this test. For each month, we run a cross-sectional regression

of excess returns on market beta, size, book-to-market and Dynamic Centrality,16 and report,

in Panel 1 of Table II, time-series averages of slope coefficients and the corresponding t-

statistics, obtained with time-series standard deviations of coefficients.

Insert Table II

After controlling for DC
τ
, the slopes of the size, book-to-market and beta characteristics are

broadly consistent with those of Fama-French (1992). The slopes with respect to BE/ME

and size are, respectively, positive and negative and both strongly significant across all

specifications. The evidence of a positive market beta disappears after one controls for size.

The slope of Dynamic Centrality is positive, meaning that more central stocks gain higher

16Namely, for each month s in year t, we consider the linear model:

Ri
s+1 − rs+1 = αs + θ1sβ

i
t + θ2s logMEi

t + θ3s(BE/ME)it + θDC
s DCi

t + ǫis+1, (18)

for all stocks i is sample in year t.
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expected returns, and it is statistically significant at standard confidence levels. We have

remarked that the positive relation between centrality and book-to-market suggests that

the value premium may in part be a compensation for a pronounced tendency to transfer

distress, which necessarily turns the firm into a cyclical performer. We further explore

this interpretation by considering the 10 book-to-market sorted portfolios. To quantify the

risk premium of these portfolios attributable to Dynamic Centrality, we denote by cmp a

centrality factor,17 defined as the return of a value-weighted portfolio long 25% of the stocks

with largest centrality and short 25% with the smallest. We then regress portfolio excess

returns on cmp and the Fama-French smb and market return factors:

Ri
t − rt = αi + βi

mkt(R
M
t − rt) + βi

smbsmbt + βi
cmpcmpt + ǫit, i = 1, . . . , 10 (19)

Annual centrality premia, βi
cmpcmp,18 range from a statistically insignificant 0.5% of the

first book-to-market decile, to a significant 15.3% of the last. To test whether the value

premium can also be interpreted as a centrality premium, we consider monthly returns of a

portfolio long the last and short the first decile of the book-to-market distribution, and repeat

regression (19) on them. Panel 2 of Table II reports the coefficients. The expected return

of (most) value stocks in excess of (most) growth stocks is partly explained by a centrality

premium component, with a highly significant and positive price of risk. Consistent with

the cyclical nature of the premium, the market beta coefficient is positive and significant.

E. Robustness to Measurement Error

Since Dynamic Centrality is not directly observed, but obtained by plugging network param-

eter estimates in (13), there is the potential for statistical error to alter results.19 To address

17cmp: ‘center minus periphery’.
18cmp is the sample average of the centrality factor.
19The error-in-variables problem for the CAPM beta in Fama-McBeth regressions is addressed in Shanken

(1992).
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this concern, we have simulated from the asymptotic distribution of parameter estimates,

thus obtaining a distribution of centrality measures, and of corresponding slopes (and their

t-stats) in the Fama-McBeth regression (18).20 Table III reports summary statistics.

Insert Table III

The increasing relation between centrality and expected returns is robust to estimation error:

there is less than 5% probability of obtaining a slope smaller than 0.24 (for a mean estimate

of 0.54) and with a t-statistics smaller than 2.5.

VII. Conclusions

We study an economy where network links among firms’ cash-flows generate cross-sectional

predictability of returns. We interpret network connectivity as the ability to transfer a

distress state to other firms’ fundamentals in a directed and timely manner. Highly central

firms, which actively determine the propagation of fundamental shocks in the economy, are

pronouncedly cyclical and gain higher expected returns. We propose an easily implementable

measure of network centrality, ‘Dynamic Centrality’, and use earnings data to estimate it.

Consistent with the theoretical prediction, we find that central firms gain higher returns on

average, and the positive price of risk of a centrality mimicking factor displays high cross-

sectional heterogeneity. We also investigate how centrality relates to firm characteristics such

as size and book-to-market. In this respect, we find that centrality helps to micro-found the

distress-related nature of the value premium: part of the expected return of value stocks in

excess of growth stocks is a centrality premium, earned to compensate for the pronounced

ability of a firm to transfer distress, and contribute to turn it systematic.

20The Appendix contains further details of the procedure.
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Appendix: Proofs and Estimation Methodology

The notations OA.AX or OA.BX refer to equation number X reported in Online Appendix A or Online

Appendix B, respectively. In what follows we drop functional arguments for the intensity processes when no

confusion may arise, and denote them simply by λt and ηt.

Proof of Proposition 1. By market clearing, aggregate consumption reads Ct

∑N
i=1 x

i
t. Then, the consump-

tion optimality condition of the representative agent implies the following equilibrium state price density,

ξt:

ξt = e−δt

(
N∑

i=1

xi
t

)−γ

(20)

As detailed in OA (expression (OA.A1) and thereafter), this implies the following expressions for the equi-

librium interest rate (rt) and market price of distress/recovery risk (θt):

rt = δ −

N∑

i=1

{
Hi

t

[
1−

(
xi +

∑
xt−

xi +
∑

xt−

)−γ
]
ηit + (1−Hi

t)

[
1−

(
xi +

∑
xt−

xi +
∑

xt−

)−γ
]
λi
t

}
(21)

θit = Hi
t

(
xi +

∑
xt−

xi +
∑

xt−

)−γ

+ (1−Hi
t)

(
xi +

∑
xt−

xi +
∑

xt−

)−γ

i = 1, 2, . . . N, (22)

where
∑

xt− denotes the sum of trees’ dividend excluding i at time t−.

Let H denote the current vector of distress (or not) state for the trees. Given the equilibrium state-price

density ξt as in (20), the absence of arbitrage opportunities implies:

P i(H)

xi
t

=
1

ξt
E

[∫ ∞

t

ξs
xi
s

xi
t

ds

∣∣∣∣Ft

]

=
P̂ i(H)

xi
t

(∑N
j=1 x

j
t

)−γ ; P̂ i(H) = E



∫ ∞

t

e−δ(s−t)xi
s




N∑

j=1

xj
s




−γ

ds

∣∣∣∣∣∣
Ft


 (23)

Online Appendix A (expression (OA.A9) and thereafter) derives an explicit form for the vector P̂i =

[. . . , P̂ i(H), . . . ]′, containing all 2N realizations of P̂ i(H):

P̂i = (a−AH)−1C̃i (24)

a is a diagonal matrix with δ on the main diagonal. AH is the transition matrix of the multidimensional

26



Markov chain Ht = (H1
t , H

2
t , . . . , H

N
t )′. C̃i is the 2N vector of dividends paid in each state, discounted by

the marginal utility. According to (23), the vector of P/D ratios for all states H is then:

Vi = (a−AH)−1Ci; Ci =
C̃i

xi
t

(∑N
j=1 x

j
t

)−γ (25)

�

Proof of Proposition 2. From (OA.A4), θit−1 is the market price of tree i’s risk of dividend growth jumps,

either distress or recoveries, depending on i’s present state. λiθit and ηiθit are the risk-neutral intensities of

distress and recovery. Let H denote the present realization of Ht. To find the conditional risk premium of

equity i, namely

µi
t = E

[
dP i(H)

P i(H)

∣∣∣∣Ft

]
+

xi
t

P i(H)
− rt, (26)

we apply Ito’s lemma to the martingale M i
t = ξtP

i(H) +
∫ t

0
ξsx

i
sds, taking into account expression (OA.A4)

for the state-price density. We obtain:

dM i
t = ξtx

i
tdt+ ξtP

i(H)mi
tdt− ξtP

i(H)rtdt

−

N∑

j=1

Hj
t

[
θjt ξtP

i(H+j)− ξtP
i(H)

]
(−dHj

t ) +

N∑

j=1

(1−Hj
t )
[
θjt ξtP

i(H−j)− ξtP
i(H)

]
dHj

t (27)

mi
t denotes equity i’s instantaneous expected return E[dP i/P i|Ft]. H−j ( H+j) is the realization of H to

which the present state H jumps if tree j has a distress (recovery). Dividing both sides of (27) by ξtP
i(H),

taking expectations and recalling that the martingale property of M i
t implies that the drift component of

(27) must vanish, we obtain:

µi
t = mi

t +
xi
t

P i(H)
− rt = −

N∑

j=1

Hj
t

[
θjt

P i(H+j)

P i(Ht)
− 1

]
ηjt −

N∑

j=1

(1−Hj
t )

[
θjt

P i(H−j
t )

P i(H)
− 1

]
λj
t (28)

The RHS of (28) coincides with the expression reported in the Proposition. The gross return on security i

triggered, respectively, by a distress or a recovery of tree j, reads explicitly:

P i(H−j)

P i(H)
=

1
′

H−jVi

1
′

HVi

xi(H−j
t )

xi(Ht)
(29)

P i(H+j)

P i(H)
=

1
′

H+jVi

1
′

HVi

xi(H+j
t )

xi(Ht)
(30)
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where the vector of conditional P/D ratios of security i, Vi, is reported in expression (25), and the notation

xi( · ) emphasizes the dependence on the state of the dividend xi. �

We only report the assumptions and a sketch of the proofs of Proposition 3, referring to Online Appendix

A for the detailed derivations.

Assumptions and Sketch of the proof for Proposition 3.

Assumption 1. The dividend processes are homogeneous across assets, and they are deterministic functions

of the economy size N :

xi
t(H) =





f(N) if Hi
t = 0

f(N) if Hi
t = 1

i = 1, . . . N (31)

Moreover

lim
N→∞

( ∑N
j=1 x

j
t (H)

∑N
j=1 x

j
t (Ht)

)−γ

xi
t(H)

xi
t(Ht)

= c(H,Ht) (32)

with 0 < c(H,Ht) < ∞, for all possible states H.

Assumption 2. Let H1 denote the collection of states where firm 1 is in distress, and H1 the states where

it is not. Then:

i) λj(H1) = kλ and λj(H1) = λ, j = 2, 3, . . . , N , with k > 1.

ii) ηj(H1) = ηj(H1) = η.

Intensity parameters depend on economy size N , in such a way that total distress and recovery risk are

bounded as N → ∞:

limN→∞ Nλ = Kλ < ∞

limN→∞ Nη = Kη < ∞
(33)

which implies

lim
N→∞

λ = lim
N→∞

η = 0 (34)

The centrality parameter k satisfies the condition:

1−Kλ(k + 1)∆−Kη∆ > 0 (35)

for small ∆.
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Assumptions 1 simplifies the asymptotic behavior of dividend shares while insuring finite price-dividend

ratios, thus allowing us to focus on distress connectivity. Assumption 2 introduces the structure of the

network, where distress of the central firm (Firm 1) increases all others’ distress intensities by a factor k.

Condition (33) guarantees finite asymptotic asset prices and risk premia, while condition (35) is a balance

condition which, as discussed in the text, guarantees that firm 1 is more exposed to its distress risk, by

limiting the extent of distress propagation. The homogeneity assumption about dividends marginalizes the

role of dividend share size and allows network connectivity be the sole determinant of risk premia. We

outline the steps of the proof.

• The risk premium µi
t of any firm i can be expressed as:

−


µi

t −
N∑

j=1

λ̃j


P i(Ht) =

N∑

j=1

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−a(tu−t)
∑

Htu

Prob
(
Htu |H

±j
t

)
Ai(Htu) (36)

where Ai(H) denotes the entry of Ai = ACi corresponding to state H: the (marginal utility) dis-

counted dividend paid in state H. Prob
(
Htu |H

±j
t

)
is the probability of reaching Htu at time tu

conditional on state H
±j
t at time t. H

±j
t is the realization to which Ht moves from realization Ht

(the initial state) after a distress (−) of a recovery (+) of firm j. λ̃j(Ht)θ
j(Ht) is the risk neutral

intensity of distress or recovery (depending on the current state Ht) of firm j.

• Letting Ri denote the RHS of (36), we want to show that the assumptions above are sufficient for

limN→∞ RN −R1 ≥ 0, where N is any noncentral firm,21 provided that neither N nor 1 are in distress

in the initial state Ht. In light of (36), this implies that limN→∞ µN
t − µ1

t ≤ 0.

• To this end, note that

RN −R1 =

N∑

j=1

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−a(tu−t)
∑

Htu

Prob
(
Htu |H

±j
t

)
[AN (Htu)−A1(Htu)] (37)

We consider all possible states Htu at future times tu. According to Lemma 1 in the Online Appendix,

the only nonzero terms in the last summation of (37) correspond to states Htu where firm 1 and N

are not both in distress or both not in distress.

• Since in all nonzero terms the firms cannot have the same (distress) state, we can partition the last

21We use the same letter N to denote any noncentral firm and the number of firms in the economy. To
which of the two we refer is implied by the context.
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summation of (37) into pairwise sums of the form:

Prob
(
Htu = H1

∣∣H±j
t

) [
AN (H1)−A1(H1)

]
+ Prob

(
Htu = H

1
∣∣∣H±j

t

) [
AN (H

1
)−A1(H

1
)
]

(38)

State H1 and H
1
coincide, with the exception that firm 1 (N) is in distress in the former (latter) and

it is not in the latter (former).

• The purpose of Lemma 1 in the Online Appendix is to show that (38) is positive for N → ∞ if the

assumptions above hold. With the addition of for a few technical details, this fact proves the claim

of the Proposition.

�

Estimation procedure. Index i refers henceforth to one of the N = 16 beta-size sorted portfolios.

The portfolio earnings process, denoted by Ei
t , is assumed to follow a two-state Markov chain, with

states (E
i
, Ei), E

i
> Ei, so that the following stochastic differential equation describes its dynamics:

dEi
t = −(E

i
− Ei)(1−Hi

t)dH
i
t − (E

i
− Ei)Hi

tdH
i
t i = 1, . . . , N (39)

The distress/recovery indicator, Hi
t , is the same two-state continuous-time Markov chain driving the dividend

process of firm i, xi
t.
22 As mentioned in the text, we embed the network structure in the following state-

dependent form of distress transition intensities:

λi
t = λi(H1

t , . . . , H
N
t ) = λi

0


1 +

N∑

j=1

cjH
j
t


 , i = 1, . . . , N. (40)

We denote by ǫit the observation error on the earnings of portfolio i at time t. Ei
t and its empirical counterpart,

Êi
t , are then related by the measurement equation:

Êi
t = Ei

t + ǫit i = 1, . . . , N (41)

with ǫit ∼ NID(0, σi). The observation errors are cross-sectionally independent, so that

(ǫ1t , ǫ
2
t , . . . , ǫ

N
t ) ∼

N∏

i=1

φ(ǫit|σi) t = 1, . . . , T (42)

22We remind in particular that in case of recovery jump we have Hi
tdH

i
t = −1.
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where φ( · |σi) is the Normal centered probability density function with variance σ2
i , and T = 177 denotes

the number of quarterly observations available, from January 1963 to December 2007. We estimate the

parameters vector θ = (λi
0, η

i, E
i
, Ei, ci)

′, i = 1, . . . , N , similarly to the Simulated Maximum Likelihood

method of Brandt and Santa Clara (2002), namely we maximize the following unconditional likelihood

criterion:

θ∗ = argmax
θ

E

[
T∑

t=1

N∑

i=1

log φ(Êi
t − Ei

t |θ)

]
(43)

The expectation is with respect to the stationary distribution of the Markov Chain that governs Ei
t in (39).

We approximate it by Monte Carlo simulation as follows: i) given some parameter set θ, we simulate an

earnings trajectory Ei
t(ω) of length np×T , for large np, by sampling the next jump time τ it after time t from

an exponential distribution with the current intensity as parameter. Since all intensities change at mini τ
i
t ,

we resample the next jump times at this instant. ii) We build an extended sample Êi
t of length np× T , by

concatenating np copies of the original one, and finally set:

E

[
T∑

t=1

N∑

i=1

log φ(Êi
t − Ei

t |θ)

]
≈

1

np

np×T∑

t=1

N∑

i=1

log φ(Êi
t − Ei

t(ω)|θ). (44)

�

Parameter standard errors are obtained with the standard asymptotic theory for ML estimators, hence

we illustrate them in Online Appendix B for brevity.

Robustness of slope coefficient to DC estimation error. We compute Dynamic Centrality DC
1m.

i , as

defined in (13), using the Maximum Likelihood estimate θ∗ of the parameter vector (reported in Table V

of the Online Appendix). We want to assess whether the main conclusions of the paper are affected by the

estimation error of the centrality indicator. To this end, we test the robustness of the (average) slope of

DC
1m.

i in the Fama-McBeth regression, using a simulation procedure. We extract N = 1500 independent

samples of the parameter set from its asymptotic distribution:

θ̂i = θ∗ +
√

diag[I−1(θ∗)]⊙ ǫi i = 1, . . . , N (45)

where the Fisher information matrix I(θ∗) is obtained as detailed in Online Appendix B, and ǫi is a standard

Normal random vector. For each parameter sample θ̂i we obtain the corresponding firm Dynamic Centralities

measures plugging θ̂i into (13), and repeat the Fama-McBeth regression, thus obtaining an empirical distri-
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bution of slopes and Fama-McBeth t-statistics implied by parameters’ estimation error. Summary statistics

of these distributions are in Table III.
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Table I – Model (39)-(40) is estimated on
the earnings of beta-size sorted portfolios, using the maximum likelihood procedure described
in the Appendix. Panel 1 reports the 1-month Dynamic Centrality measures (multiplied by
a factor of 100) obtained from the Maximum Likelihood parameter estimates (reported in the
Online Appendix). Panel 2 reports Dynamic Centrality measures for extreme portfolio deciles
of the size and then book-to-market distribution. Since parameter estimates are not available on
these portfolios, we obtain their centralities indirectly, by assigning to each stock the DC

τ
i of its

beta-size sorted portfolio, and then computing an equally weighted average of the centralities

in the same size or book-to-market decile: DC
τ
ME−i(t) =

∑
j∈ME−i

DC
τ

j

nt
, where ME − i is

the i−th size (or book-to-market) decile, and nt the number of stocks in sample in year t.

Panel 1. 1-month Dynamic Centrality: beta-size sorted portfolios

β − 1 β − 2 β − 3 β − 4
ME - 1 0.108 0.127 -0.003 0.001
ME - 2 -0.278 -0.047 -0.048 0.013
ME - 3 0.244 0.045 -0.061 -0.131
ME - 4 0.369 -0.228 0.096 -0.206

Panel 2. 1-month and 1-quarter Dynamic Centrality: size sorted and B/M sorted portfolios

ME − 1 ME − 10 ∆ B/M − 1 B/M − 10 ∆

τ = 1m.
0.0060
(85.76)

0.0013
(4.17)

−0.0047
(−14.10)

−0.0028
(−8.03)

0.0013
(7.22)

0.0041
(10.42)

τ = 3m.(×1000)
0.0995
(65.15)

0.297
(12.76)

0.198
(8.58)

−0.072
(−3.94)

−0.011
(−1.40)

0.060
(3.03)
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Table II – Panel 1. Fama-McBeth regressions results. The cross-sectional regression
(18) of individual stock returns on beta, size, book-to-market, and dynamic centrality is run
for each month in the sample, and time series averages of slopes are reported. Standard errors
of slopes are in parenthesis. Panel 2 reports results of the following regression: R10

t − R1
t =

α+ βmkt(R
M
t − rt) + βsmbsmbt + βcmpcmpt + ǫt. On the left-hand-side: the returns of a value-

weighted portfolio long the last decile of the book-to-market distribution and short the first. On
the right-hand-side: the market excess return, the smb size factor, the centrality factor, defined
as return of a value-weighted portfolio long the last and short the first quartile of the distribution
of stocks with respect to DC1m.. We remind that each stock has the DC1m. of the 4× 4 beta-
size sorted portfolio to which it belongs. T-statistics of the coefficients are in parenthesis.

Panel 1. Average Slopes of Fama-McBeth regressions
July 1963-June 2008

β log(ME) BE/ME DC
1m.

R2

0.0021
(0.792)

−0.0023
(−5.79)

0.0032
(7.765)

0.6205
(4.77)

5.02
(10.25)

Panel 2. Long-short portfolio of BE/ME sorted deciles

α βmkt βsml βDC R2

-0.003 0.335 -0.177 0.339 4.97%
(-0.42) (1.99) (-0.90) (5.15)

Table III – The simulation
procedure described in the Appendix (‘Robustness to estimation error’), produces an empirical
distribution (implied by parameters estimation error) of DC1m. slopes and their t-stats in the
Fama-McBeth regression (18). The table reports summary statistics of these distributions.

Monte-Carlo slopes and t-statistics of Fama-McBeth regressions
adjusted for error-in-variables, July 1963-June 2008

Slope DC
1m

t−stat

Mean 0.5381 4.3260

Median 0.5135 4.4179

Std 0.2124 1.0278

5-95%-iles 0.2408-0.9365 2.5837-5.9128
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Online Appendix:

Dynamic Networks and Asset Pricing

This Online Appendix collects the proofs and the auxiliary results which are not included in the Ap-

pendix to the main text of the paper. It comprises an Online Appendix A, B, C, and D. The second

is devoted to the estimation methodologies of the empirical Sections, the third to the failure of the

asymptotic two-fund separation property, the fourth collects additional tables.

Propositions, lemmas, and equation numbers are prefixed with the letter that identifies the appendix. Num-

bers without prefix refer to propositions, Lemmas, or equations in the main text.
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Online Appendix A

In what follows we drop functional arguments for the intensity processes when no confusion may arise, and denote

them simply as λt and ηt.

The equilibrium interest rate and market prices of risk. According to the optimality conditions for the

representative agent, the equilibrium state price density, ξt, is:

ξt = e−δt

(
N∑

i=1

xi
t

)−γ

(OA.A1)

On the other hand, for any security price P i
t adapted to Ft, including the risk-less bond, the cum-dividend

discounted price process (P i
t ξt+

∫ t

0
ξsx

i
sds) is a martingale. Applying Ito’s lemma to this expression, the martingale

property implies that ξt must also obey:

ξt = exp

(
−

∫ t

0

rsds−

∫ t

0

N∑

i=1

λ̂i
s(1− θis)ds+

∫ t

0

N∑

i=1

− log(θis)sgn(H
i
t)dH

i
s

)
(OA.A2)

where sgn(Hi
t) = −1 if Hi

t ≤ 0 and sgn(Hi
t) = 1 if Hi

t > 0. Furthermore, θit is the market price of event risk for

tree i - distress risk, if tree i is in not in distress, i.e. Hi
t = 0, recovery risk if tree i is in distress, i.e. Hi

t = 1, and

λ̂i
t = Hi

tη
i + (1−Hi

t)λ
i
t. (OA.A3)

By applying Ito’s lemma for jump processes to (OA.A2), we obtain:

dξt = −ξtrtdt+ ξt

[
N∑

i=1

(θis − 1)(−sgn(Hi
t)dH

i
t − λ̂i

t)

]
(OA.A4)

By Ito’s lemma for jump processes applied instead to (OA.A1), we obtain the alternative representation:

dξt = −δξt − ξt

N∑

i=1

[
(1−Hi

t)

[
(xi +

∑
xt−)

−γ − (xi +
∑

xt−)
−γ
]

(xi +
∑

xt−)−γ
λi
t+

Hi
t

[
(xi +

∑
xt−)

−γ − (xi +
∑

xt−)
−γ
]

(xi +
∑

xt−)−γ
ηit

]
+ ξt

N∑

i=1

[
(1−Ht)

[
(xi +

∑
xt−)

−γ − (xi +
∑

xt−)
−γ
]

(xi +
∑

xt−)−γ
(dHi

t − λi
t)+

Hi
t

[
(xi +

∑
xt−)

−γ − (xi +
∑

xt−)
−γ
]

(xi +
∑

xt−)−γ
(−dHi

t − ηit)

]
(OA.A5)

∑
xt− denotes the sum of dividends across trees, excluding i, an instant before the jump of i takes place. Matching

the coefficients of expression to (OA.A5) to those of expression (OA.A4), we obtain the equilibrium interest rate
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and market prices of risk:

rt = δ −
1

2
γ(γ + 1)σ2

Y +
N∑

i=1

{
Hi

t

[
1−

(
xi +

∑
xt−

xi +
∑

xt−

)−γ
]
ηit+ (OA.A6)

(1−Hi
t)

[
1−

(
xi +

∑
xt−

xi +
∑

xt−

)−γ
]
λi
t

}
(OA.A7)

θit = Hi
t

(
xi +

∑
xt−

xi +
∑

xt−

)−γ

+ (1−Hi
t)

(
xi +

∑
xt−

xi +
∑

xt−

)−γ

i = 1, 2, . . . N (OA.A8)

Detailed derivation of equilibrium asset prices. We need to determine the process P̂ i(H) of (20) in the the

Appendix. Since the process
∫ t

0

e−δsxi
s




N∑

j=1

xi
s




−γ

ds+ e−δtP̂ i(H) (OA.A9)

is an Ft−martingale, it has no predictable component, therefore applying Ito’s lemma to (OA.A9) and taking

conditional expectations, the resulting expression must vanish. Using the notation λ̂i
t = Hi

tη
i + (1 −Hi

t)λ
i
t, we

obtain: 
−δ −

N∑

j=1

λ̂j
t


 P̂ i(H) +

N∑

j=1

λ̂j
t P̂

i(H±j) + xi
t




N∑

j=1

xj
t




−γ

= 0 (OA.A10)

The current distress (or not) state for the economy, H, moves to the state H+j if tree j recovers from a distress,

or to H−j if it experiences a distress. Clearly equation (OA.A10) is solved jointly to the equations satisfied by

the functions P̂ i(H±j). We can write the resulting linear system of equations in vector form:

(
a−AH

)
P̂i − C̃i = 0 (OA.A11)

P̂i = [. . . , P̂ i(H), . . . ]′ contains functions P̂ i( · ) conditional on all 2N possible states H.1 Similarly C̃i =

[. . . , xi(H)
(∑N

j=1 x
j(H)

)−γ

, . . . ]′ contains all conditional (persistent) dividends discounted by the marginal util-

ity of aggregate consumption. a is a 2N × 2N diagonal matrix of δs. AH is the Markov transition matrix of the

system formed by all dividends’ persistent components. From (OA.A11):

P̂i =
(
a−AH

)−1
C̃i (OA.A12)

Expressions of probabilities in distress correlations (10). We have denoted by AH the transition matrix

of the N−dimensional Markov chain (H1, H2, . . . , HN ). The 2N vector of steady state probabilities implied by

AH solves:

π′ = π′ exp
(
−AH

)
(OA.A13)

We obtain π numerically by iterating equation (OA.A13) until a fixed point is reached within small tolerance. To

1Of course not all of them are mutually reachable, because at most one of the trees can fall in distress or
recover at some time instant.
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obtain the unconditional probabilities P [Hj
t+τ = 1] (= P [Hj

t = 1]) and P [Hi
t = 1] we sum the entries of π over

all the states where j is in distress. The conditional probability P [Hj
t+τ = 1|Hi

t = 0] is given by the standard

solution of the Chapman-Kolmogorov equations:

P [Hj
t+τ = 1|Hi

t = 0] = I′i exp
(
−AHτ

)
Ij (OA.A14)

Ij is a 2N vector with ones for the combinations of (H1, H2, . . . , HN ) where tree j is in distress and zero elsewhere.

Ii is similarly defined.

Proof of Proposition 3. Let Ht denote a state where firms 1 and N are not in distress (H1
t = HN

t = 0). Let ∆

be a small time interval. We denote by Pi
S(∆,Ht) the price in state Ht of the claim to dividends of firm i paid

until time t+∆, evaluated at time t: the dividend strip that expires in t+∆.

The price of the dividend strip can be found along the lines of the proof of Proposition 1. We have

Pi
S(∆,Ht) =

1
(∑N

j=1 x
j
t

)−γ
E



∫ t+∆

t

e−δ(s−t)xi
s




N∑

j=1

xi
s




−γ

ds

∣∣∣∣∣∣
Ft


 (OA.A15)

= 1
′
(Ht)

∫ t+∆

t

exp(−(a−AH)(s− t))dsCi (OA.A16)

exp( · ) denotes the matrix exponential. 1(Ht) is 2
N−dimensional column vector with 1 in the entry corresponding

to state Ht and zeros otherwise. Since ∆ is small, we can also write:

Pi
S(∆,Ht) ≈ 1

′
(Ht) exp(−(a−AH)∆)Ci∆ (OA.A17)

≈ 1
′
(Ht)ACi∆

where A = [I − (a−AH)∆)]. We can think of the stock price (an infinite maturity dividend strip) as an infinite

sum of prices of forward-start dividend strips:

P i
S(Ht) =

1
(∑N

u=1 x
u
t

)−γ
E




∞∑

j=0

e−δ(tj−t)

(
N∑

u=1

xu
tj

)−γ

Pi
S(∆,Htj )

∣∣∣∣∣∣
Ft




=
1

(∑N
j=1 x

j
t

)−γ




∞∑

j=0

1
′
(Ht) exp(−(a−AH)(tj − t))

∫ tj+∆

tj

exp(−(a−AH)(s− tj))dsC
i




≈
1

(∑N
j=1 x

j
t

)−γ

[
1
′
(Ht)A

(
Ci +ACi +AACi + . . .

)
∆
]

where t0 = t and tj − tj−1 = ∆.

We use the notation xi(Ht) to denote the dividend paid by firm i in the realization Ht of H. As we are

going to consider limiting behaviors for the number of firms N that grows unboundedly, we impose the following

assumptions.

Assumption 1. Dividends are homogeneous across assets, and they are deterministic functions of the economy
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size N :

xi
t(H) =

{
f(N) if Hi

t = 0

f(N) if Hi
t = 1

i = 1, . . . N (OA.A18)

Moreover

lim
N→∞

( ∑N
j=1 x

j
t (H)

∑N
j=1 x

j
t (Ht)

)−γ

xi
t(H)

xi
t(Ht)

= c(H,Ht) (OA.A19)

with 0 < c(H,Ht) < ∞, for all possible states H.

We have emphasized the dependence of the limits on the particular state of aggregate distress for the economy.

For simplicity we drop the dependence on economy size N from the xi
t( · ).

Assumption 2. Let H1 denote the collection of states where firm 1 is in distress, and H1 the states where it is

not. Then:

i) λj(H1) = kλ and λj(H1) = λ, j = 2, 3, . . . , N , with k > 1.

ii) ηj(H1) = ηj(H1) = η.

Intensity parameters depend on economy size N , in such a way that total distress and recovery risk are bounded

as N → ∞:
limN→∞ Nλ = Kλ < ∞

limN→∞ Nη = Kη < ∞
(OA.A20)

which implies

lim
N→∞

λ = lim
N→∞

η = 0 (OA.A21)

The centrality parameter k satisfies the condition:

1−Kλ(k + 1)∆−Kη∆ > 0 (OA.A22)

for small ∆.

For simplicity we drop the dependence on N from λ and η.

Assumptions 1 simplifies the asymptotic behavior of dividend shares while insuring finite price-dividend

ratios, thus allowing us to focus on distress connectivity. Assumption 2 serves two purposes: condition (OA.A20)

guarantees finite asymptotic asset prices and risk premia, while condition (OA.A22) is a balance condition which,

as discussed in the text, guarantees that firm 1 is more exposed to its distress risk, by limiting the extent of

distress propagation. The dividend homogeneity assumption, which is formalized as

xj(H1) = x xj(H1) = x, j = 1, 2, 3, . . . , N, (OA.A23)

marginalizes the role of dividend share size and allows network connectivity as sole determinant of risk premia.

The risk premium of the claim to the i−th firm is obtained from (5) of the text, after joining distress and

recovery risk in a single expression:

µi
t =

N∑

j=1

λ̃j
N (Ht)

(
1− θjn(Ht)

P i(H±j
t )

P i(Ht)

)
(OA.A24)
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or

−


µi

t −
N∑

j=1

λ̃j


P i(Ht) =

N∑

j=1

λ̃j(Ht)θ
j(Ht)P

i(H±j
t ) (OA.A25)

where λ̃i = Hi
tη

i + (1 − Hi
t)λ

i. θ(Ht) is the market price for the distress or recovery risk of firm j reported in

(19). P i(H±j
t ) is the price to which security i jumps immediately after the distress or recovery of the j-th tree.

Using expression (OA.A18) to represent P i(H±j
t ), it is convenient to restate the RHS of (OA.A25) as:

Ri =

N∑

j=1

λ̃j(Ht)θ
j(Ht)

[
1
′
(H±j

t )

∞∑

u=0

exp(−(a−AH)(tu − t))ACi

]
(OA.A26)

Let Ai = ACi, with Ai(H) denoting the entries of Ai corresponding to state H. We also have

1
′
(H±j

t )

∞∑

u=0

exp(−(a−AH)(tu − t)) =

∞∑

u=0

e−δ(tu−t)Prob
(
Htu |H

±j
t

)
(OA.A27)

where Prob ( · ) is the row vector of transition probabilities from time t to tu conditional on state H±j
t at time t.

We need the following two lemmas:

Lemma 1. For any state H where firms 1 and N are both in distress or they are both not in distress, AN (H)−

A1(H) = 0.

Proof. When firms 1 and N are both in distress in state H we have:

AN (H)−A1(H) =
∑

j∈ND(H)

kλ∆
[
CN (H−j)− C1(H−j)−

(
CN (H)− C1(H)

)]

−
∑

j∈D(H)
j 6=1,N

η∆
[
CN (H)− C1(H)−

(
CN (H+j)− C1(H+j)

)]
+ (1− δ)(CN(H)− C1(H))

− η∆
[
CN (H)− C1(H)−

(
CN (H+1)− C1(H+1)

)]
︸ ︷︷ ︸

1

− η∆
[
CN (H)− C1(H)−

(
CN (H+N )− C1(H+N )

)]
︸ ︷︷ ︸

2

(OA.A28)

We have used the notation Ci(H) to denote the entry of vector Ci that corresponds to state H. H+j (H−j)

denotes the state reached from H when firm j recovers (has a distress). D(H) (ND(H)) denotes the collection of

firm in (non) distress in stateH1. Using the homogeneous dividends assumption iii), we have CN (H)−C1(H) = 0,

CN (H−j) − C1(H−j) = 0, CN (H+j) − C1(H+j) = 0, j 6= 1, N , while terms 1 and 2 in (OA.A28) are opposite,

so that AN (H)−A1(H) = 0.
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When firms 1 and N are both not in distress H we have:

AN (H)−A1(H) =
∑

j∈ND(H)
j 6=1,N

λ∆
[
CN (H−j)− C1(H−j)−

(
CN (H)− C1(H)

)]

−
∑

j∈D(H)

η∆
[
CN (H)− C1(H)−

(
CN (H+j)− C1(H+j)

)]
+ (1− δ)(CN(H)− C1(H))

+ λ∆
[
CN (H−1)− C1(H−1)−

(
CN (H)− C1(H)

)]
︸ ︷︷ ︸

1

+λ∆
[
CN (H−N )− C1(H−N )−

(
CN (H)− C1(H)

)]
︸ ︷︷ ︸

2

(OA.A29)

Using the homogeneous dividends assumption iii), we have CN (H) − C1(H) = 0, CN (H−j) − C1(H−j) = 0,

CN (H+j)−C1(H+j) = 0, j 6= 1, N , while terms 1 and 2 in (OA.A29) are opposite, so that AN (H)−A1(H) = 0.�

Lemma 2. Consider two states, H1 ∈ H1 and H
1
∈ H1, identical in all components except 1 and N : in H1

firm N is not in distress, while in H
1
firm N is in distress. Conditional on some state Ht at time t where both

firms are not in distress, then:

lim
N→∞

[
kProb

(
Htu = H1

∣∣Ht

)
− Prob

(
Htu = H1

∣∣∣Ht

)]
λ∆ ≥ 0, (OA.A30)

and there exists a k∗(λ, η, kh, kl) such that, for k > k∗

lim
N→∞

[
Prob

(
Htu = H1

∣∣Ht

)
− Prob

(
Htu = H1

∣∣∣Ht

)]
λ∆ ≤ 0 (OA.A31)

for any H1, with tu ≥ t.

Furthermore:

Prob
(
Htu = H1

∣∣Ht

) [
AN (H1)−A1(H1)

]
− Prob

(
Htu = H

1
∣∣∣Ht

) [
A1(H

1
)−AN (H

1
)
]
=

[
kProb

(
Htu = H1

∣∣Ht

)
− Prob

(
Htu = H

1
∣∣∣Ht

)]
λ∆




∑

j∈ND(H1)
j 6=N

(
CN (H1−j)− C1(H1−j)−

(
CN (H1)− C1(H1)

))

(OA.A32)

−
(
CN (H1)− C1(H1)

)]
+
[
Prob

(
Htu = H1

∣∣Ht

)
− Prob

(
Htu = H

1
∣∣∣Ht

)] [
(1− δ)(CN (H1)− C1(H1))+

∑

j∈D(H1)
j 6=1

η∆
((
CN (H1+j)− C1(H1+j)

)
−
(
CN (H1)− C1(H1)

))
− η∆

(
CN (H1)− C1(H1)

)

 (OA.A33)

Proof. For simplicity we adopt the following notation, limited to this proof: ptut (H) = Prob (Htu = H|Ht).

Similarly to the proof of Lemma 1, H+j (H−j) denotes the state reached from state H when firm j recovers (has

a distress). In the same fashion, H+j1−j2+j3 , for instance, denotes the state reached from state H after a recovery

of firm j1, then a distress of firm j2, then a recovery of firm j3. We decompose the time interval tu − t into N∆
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subintervals of arbitrarily small length ∆, with N∆ an arbitrarily large integer such that ∆N∆ = tu − t. We are

going to use repeatedly the following facts:

Properties :

1. For small ∆ and H ∈ H1:

Prob (Htu = H|Htu−∆ = H) ≈ e−[num(D(H))η+num(ND(H))kλ]∆ (OA.A34)

Prob
(
Htu = H−j

∣∣Htu−∆ = H
)

≈ 1− e−kλ∆ (OA.A35)

Prob
(
Htu = H+j

∣∣Htu−∆ = H
)

≈ 1− e−η∆ (OA.A36)

(OA.A37)

for some firm j. num(D(H)) (num(ND(H))) is the number of firms that are (not) in distress in H. If

H ∈ H1 the expression kλ is replaced by λ.

2 For any state H and k > 1:

lim
N→∞

ke−[num(D(H))η+num(ND(H))kλ]∆ ≥ e−[num(D(H))η+num(ND(H))λ]∆ (OA.A38)

because

lim
N→∞

ke−[num(D(H))η+num(ND(H))kλ]∆ − e−[num(D(H))η+num(ND(H))λ]∆ ≈ lim
N→∞

k [1− (num(D(H))η+

num(ND(H))kλ)∆]− [1− (num(D(H))η + num(ND(H))λ)∆] = lim
N→∞

(k − 1)− (k − 1)num(D(H))η∆

− (k2 − 1)num(ND(H))λ∆ ≥ (k − 1)
[
1−Kη∆− (k + 1)Kλ∆

]
> 0 (OA.A39)

for small ∆. The last equality in (OA.A39) follows from assumption (OA.A22).

3. num(ND(H1)) = num(ND(H
1
)),2 and similarly for the number of firms in distress, therefore we don’t

distinguish between these expressions.

4. Excluding firms 1 and N, the sets of (non) distressed trees in H1 and H
1
coincide.

We apply the backward Chapman-Kolmogorov equations to express ptut (H1) and ptut (H1) in terms of one-step

transition probabilities ptu−∆
t ( · ). We can identify all states at the previous step from which H1 and H1 can be

reached, by the fact that in small time ∆ at most one recovery or distress event can occur. We can thus write:

[
kptut (H1)− ptut (H1)

]
λ∆ =


ptu−∆

t (H1+1)k
(
1− e−λ∆

)
− ptu−∆

t (H1+1)
(
1− e−λ∆

)
︸ ︷︷ ︸

1

2Similarly for any state reached after a sequence of common events, such as H1+j1−j2+j3 and H
1+j1−j2+j3

,
j1, j2, j3 6= 1, N .
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+ ptu−∆
t (H1−N )k

(
1− e−η∆

)
− ptu−∆

t (H1−N )
(
1− e−η∆

)
︸ ︷︷ ︸

2

+ptu−∆
t (H1)ke−[num(D(H1))η+num(ND(H1))kλ]∆

−ptu−∆
t (H1)e−[num(D(H1))η+num(ND(H1))λ]∆

+
∑

v∈D(H1)
v 6=1

ptu−∆
t (H1+v)k

(
1− e−kλ∆

)
−

∑

v∈D(H
1
)

v 6=N

ptu−∆
t (H

1+v
)
(
1− e−λ∆

)

+
∑

v∈ND(H1)
v 6=N

ptu−∆
t (H1−v)k

(
1− e−η∆

)
−

∑

v∈ND(H
1
)

v 6=1

ptu−∆
t (H

1−v
)
(
1− e−η∆

)


λ∆ (OA.A40)

Since terms 1 and 2 in (OA.A40) are nonnegative because k > 1, we can write:

[
kptut (H1)− ptut (H1)

]
λ∆ =

[
ptu−∆
t (H1)ke−[num(D(H1))η+num(ND(H1))kλ]∆

−ptu−∆
t (H1)e−[num(D(H1))η+num(ND(H1))λ]∆+

∑

v∈D(H1)
v 6=1

ptu−∆
t (H1+v)k

(
1− e−kλ∆

)
−

∑

v∈D(H
1
)

v 6=N

ptu−∆
t (H

1+v
)
(
1− e−λ∆

)

+
∑

v∈ND(H1)
v 6=N

ptu−∆
t (H1−v)k

(
1− e−η∆

)
−

∑

v∈ND(H
1
)

v 6=1

ptu−∆
t (H

1−v
)
(
1− e−η∆

)


λ∆ (OA.A41)

= ptu−2∆
t (H1+1)

(
1− e−λ∆

) [
ke−[num(D(H1))η+num(ND(H1))kλ]∆ − e−[num(D(H1))η+num(ND(H1))λ]∆

]
λ∆

︸ ︷︷ ︸
1

+ ptu−2∆
t (H1−N )

(
1− e−η∆

) [
ke−[num(D(H1))η+num(ND(H1))kλ]∆ − e−[num(D(H1))η+num(ND(H1))λ]∆

]
λ∆

︸ ︷︷ ︸
2

+
∑

v∈D(H1)
v 6=1

ptu−2∆
t (H1+v+1)

(
1− e−λ∆

) (
1− e−kλ∆

)
kλ∆−

∑

v∈D(H
1
)

v 6=N

ptu−2∆
t (H1+v+1)

(
1− e−λ∆

) (
1− e−λ∆

)
λ∆

︸ ︷︷ ︸
3

+
∑

v∈D(H1)
v 6=1

ptu−2∆
t (H1+v−N )

(
1− e−η∆

) (
1− e−kλ∆

)
kλ∆−

∑

v∈D(H
1
)

v 6=N

ptu−2∆
t (H1+v−N )

(
1− e−η∆

) (
1− e−λ∆

)
λ∆

︸ ︷︷ ︸
4

+
∑

v∈ND(H1)
v 6=N

ptu−2∆
t (H1−v+1)

(
1− e−λ∆

) (
1− e−η∆

)
kλ∆−

∑

v∈ND(H
1
)

v 6=1

ptu−2∆
t (H1−v+1)

(
1− e−λ∆

) (
1− e−η∆

)
λ∆

︸ ︷︷ ︸
5

+
∑

v∈ND(H1)
v 6=N

ptu−2∆
t (H1−v−N )

(
1− e−η∆

) (
1− e−η∆

)
kλ∆−

∑

v∈ND(H
1
)

v 6=1

ptu−2∆
t (H1−v−N )

(
1− e−η∆

) (
1− e−η∆

)
λ∆

︸ ︷︷ ︸
6
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+ ptu−2∆
t (H1)ke−[2num(D(H1))η+2num(ND(H1))kλ]∆λ∆− ptu−2∆

t (H
1
)e−[2num(D(H1))η+2num(ND(H1))λ]∆λ∆

+
∑

v∈D(H1)
v 6=1

ptu−2∆
t (H1+v)k

[
e−[num(D(H1))η+num(ND(H1))kλ]∆ + e−[num(D(H1+v)η+num(ND(H1+v))kλ]∆

] (
1− e−kλ∆

)
λ∆

−
∑

v∈D(H
1
)

v 6=N

ptu−2∆
t (H

1+v
)
[
e−[num(D(H1))η+num(ND(H1))λ]∆ + e−[num(D(H1+v)η+num(ND(H1+v))λ]∆

] (
1− e−λ∆

)
λ∆

+
∑

v∈ND(H1)
v 6=N

ptu−2∆
t (H1−v)k

[
e−[num(D(H1))η+num(ND(H1))kλ]∆ + e−[num(D(H1−v)η+num(ND(H1−v))kλ]∆

] (
1− e−η∆

)
λ∆

−
∑

v∈ND(H
1
)

v 6=1

ptu−2∆
t (H

1−v
)
[
e−[num(D(H1))η+num(ND(H1))λ]∆ + e−[num(D(H1−v)η+num(ND(H1−v))λ]∆

] (
1− e−η∆

)
λ∆

+
∑

v∈D(H1)
v 6=1

∑

v2∈D(H1+v)
v2 6=1

ptu−2∆
t (H1+v+v2)k

(
1− e−kλ∆

) (
1− e−kλ∆

)
λ∆

−
∑

v∈D(H
1
)

v 6=N

∑

v2∈D(H
1+v

)
v2 6=N

ptu−2∆
t (H

1+v+v2
)
(
1− e−λ∆

) (
1− e−λ∆

)
λ∆ (OA.A42)

+
∑

v∈D(H1)
v 6=1

∑

v2∈ND(H1+v)
v2 6=N

ptu−2∆
t (H1+v−v2)k

(
1− e−kλ∆

) (
1− e−η∆

)
λ∆

−
∑

v∈D(H
1
)

v 6=N

∑

v2∈ND(H
1+v

)
v2 6=1

ptu−2∆
t (H

1+v−v2
)
(
1− e−λ∆

) (
1− e−η∆

)
λ∆

+
∑

v∈ND(H1)
v 6=N

∑

v2∈D(H1−v)
v2 6=1

ptu−2∆
t (H1−v+v2)k

(
1− e−kλ∆

) (
1− e−η∆

)
λ∆

−
∑

v∈ND(H
1
)

v 6=1

∑

v2∈D(H
1−v

)
v2 6=N

ptu−2∆
t (H

1−v+v2
)
(
1− e−λ∆

) (
1− e−η∆

)
λ∆

+
∑

v∈ND(H1)
v 6=N

∑

v2∈ND(H1−v)
v2 6=N

ptu−2∆
t (H1−v−v2)k

(
1− e−η∆

) (
1− e−η∆

)
λ∆

−
∑

v∈ND(H
1
)

v 6=1

∑

v2∈ND(H
1−v

)
v2 6=1

ptu−2∆
t (H

1−v−v2
)
(
1− e−η∆

) (
1− e−η∆

)
λ∆ (OA.A43)

The last equality in (OA.A43) follows by applying the Chapman-Kolmogorov equations to express ptu−∆
t ( · ) in

terms of one-step backward transition probabilities ptu−2∆
t ( · ), and identifying all states from which next-period

states can be reached, by the fact that in small time ∆ at most one recovery or distress event can occur. Terms

1 and 2 in (OA.A43) are nonnegative because of Property 2. Terms 3, 4, 5, and 6 are nonnegative because k > 1.

Therefore [
kptut (H1)− ptut (H1)

]
λ∆ ≥ last RHS in (OA.A43) excluding terms 1-6. (OA.A44)

Note that terms 1-6 in (OA.A43) derive from the fact that coupled states H1 and H
1
– or the states reached
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after a common sequence of distress and recoveries – have all elements in common except firm 1 and N, therefore

in a time interval ∆ can be reached from the same state, where either both 1 and N are in distress or both are

not. By Property 2, and the fact that k > 1, these terms are nonnegative. Applying the Chapman-Kolmogorov

equations to the RHS of (OA.A44) to condition on states at time tu−3∆, the resulting expression is then greater

or equal than the same quantity that doesn’t involve these terms. Iterating the procedure of backward induction

until time tu−m∆ and majorating the expression that neglects terms of the form 1-6 in (OA.A43), we can write:

[
kptut (H1)− ptut (H1)

]
λ∆ ≥

[
ptu−m∆
t (H1)kT 0(m,H1)− ptu−m∆

t (H
1
)T 0(m,H

1
)

+
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

ptu−m∆
t (H1+w1v1)kT 1

w1
(m,H1, v1)−

∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

ptu−m∆
t (H

1+w1v1
)T 1

w1
(m,H

1
, v1)

+
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H1+w1v1 )
v2 6=l(w2)

ptu−m∆
t (H1+w1v1+w2v2)kT 2

w1,w2
(m,H1, v1, v2)

−
∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H
1+w1v1 )

v2 6=l(w2)

ptu−m∆
t (H

1+w1v1+w2v2
)T 2

w1,w2
(m,H

1
, v1, v2)

+
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H1+w1v1 )
v2 6=l(w2)

∑

w3=+1,−1

∑

v3∈Sw3 (H1+w1v1+w2v2 )
v3 6=l(w3)

ptu−m∆
t (H1+w1v1+w2v2+w3v3)k×

× T 3
w1,w2,w3

(m,H1, v1, v2, v3)

−
∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H
1+w1v1 )

v2 6=l(w2)

∑

w3=+1,−1

∑

v3∈Sw3 (H
1+w1v1+w2v2 )

v3 6=l(w3)

ptu−m∆
t (H

1+w1v1+w2v2+w3v3
)×

× T 3
w1,w2,w3

(m,H
1
, v1, v2, v3)

. . . . . .

. . . . . .

+
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H1+w1v1 )
v2 6=l(w2)

· · ·
∑

wm=+1,−1

∑

vm∈Swm (H1+
∑m−1

h=1
whvh )

vm 6=l(wm)

ptu−m∆
t (H1+

∑m
h=1 whvh)k×

× T m
w1,...,wm

(m,H1, v1, . . . , vm)

−
∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H
1+w1v1 )

v2 6=l(w2)

· · ·
∑

wm=+1,−1

∑

vm∈Swm (H
1+

∑m−1
h=1

whvh )

vm 6=l(wm)

ptu−m∆
t (H

1+
∑m

h=1 whvh
)×

×T m
w1,...,wm

(m,H
1
, v1, . . . , vm)

]
λ∆, (OA.A45)
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where

T 0(m,H) =





1 if m = 0

T 0(m− 1, H)e−[num(D(H))η+num(ND(H))(kλ1(H≡H1)+λ1(H≡H
1
))λ]∆ otherwise

(OA.A46)

T 1
w1

(m,H, v1) =





0 if m = 0

T 0(m− 1, H)
(
1− e−λ̃(w1,H)∆

)
+ T 1

w1
(m− 1, H, v1)×

×e−[num(D(H+w1v1 ))η+num(ND(H+w1v1 ))(kλ1(H≡H1)+λ1(H≡H
1
))]∆ otherwise

(OA.A47)

T 2
w1,w2

(m,H, v1, v2) =





0 if m = 0

T 1
w1

(m− 1, H, v1)
(
1− e−λ̃(w2,H)∆

)
+ T 2

w1,w2
(m− 1, H, v1, v2)×

×e−[num(D(H+w1v1+w2v2 ))η+num(ND(H+w1v1+w2v2 ))(kλ1(H≡H1)+λ1(H≡H
1
))]∆ otherwise

(OA.A48)

. . . (OA.A49)

T m
w1,...,wm

(m,H, v1, . . . , vm) =





0 if m = 0

T m−1
w1,...,wm−1

(m− 1, H, v1, . . . , vm−1)
(
1− e−λ̃(wm,H)∆

)

+T m
w1,...,wm

(m− 1, H, v1, . . . , vm)e−num(D(H+
∑m

h=1 whvh ))η∆×

×e−num(ND(H+
∑m

h=1 whvh ))(kλ1(H≡H1)+λ1(H≡H
1
))∆ otherwise

(OA.A50)

1( · ) denotes the indicator function of an event. Furthermore:

Sw(H) =

{
D(H) if w = +1

ND(H) if w = −1
(OA.A51)

l(w) =

{
1 if w = +1

N if w = −1
(OA.A52)

l(w) =

{
N if w = +1

1 if w = −1
(OA.A53)

λ̃(w,H) =

{
kλ1(H ≡ H1) + λ1(H ≡ H

1
) if w = +1

η if w = −1
(OA.A54)

For m = N∆, we have tu −m∆ = t, so that

ptu−N∆∆
t (H) =

{
1 if Ht ≡ H

0 otherwise
, ∀H (OA.A55)

By assumption, in the initial state Ht both firms 1 and N are not in distress, while firm 1 is in distress in any

state H1+
∑s

h=1 whvh , and firm N is in distress in any state H
1+

∑s
h=1 whvh

, s = 1, . . . , N∆. This implies that taking

m = N∆ in expression (OA.A45), its RHS vanishes, and claim (OA.A30) follows.

To see that claim (OA.A31) holds, notice that

lim
k→∞

ptut (H1) = 0, (OA.A56)
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because, according to (OA.A34)-(OA.A35),

lim
k→∞

Prob
(
Htu = H1

∣∣Htu−∆ = H1
)
= 0 (OA.A57)

lim
k→∞

Prob
(
Htu = H1−j

∣∣Htu−∆ = H1
)
= 1 (OA.A58)

In other words, as the propagation of distress approaches immediacy, the probability of a future state where firm

1 is in distress and some other firm is not approaches 0. (OA.A56) does not hold instead for states of the form

H1, so that

lim
k→∞

ptut (H1)− ptut (H1) < 0. (OA.A59)

Then there must exist a k∗(λ, η, kh, kl), also dependent on N , such that ptut (H1) < ptut (H1) for k > k∗(λ, η, kh, kl).

We haven’t been able to show that ptut (H1)−ptut (H1) is monotonically decreasing in k for k > 1. We provide some

supportive numerical evidence, on a finite economy with N = 10 firms. Table I reports the critical k∗(λ, η, kh, kl)

for different values of λ and η, and the percentage of violations of the condition ptut (H1) − ptut (H1) for k <

k∗(λ, η, kh, kl), for all paired states (H1,H1), and initial states Ht. In all cases the percentages approach zero

monotonically as k → k∗(λ, η, kh, kl).

Insert Table I

To see that claim (OA.A33) holds, we write:

ptut (H1)
[
AN (H1)−A1(H1)

]
−ptut (H

1
)
[
A1(H

1
)−AN (H

1
)
]
= ptut (H1)




∑

j∈ND(H1)
j 6=N

kλ∆
[
CN (H1−j)− C1(H1−j)

−
(
CN (H1)− C1(H1)

)]
+

∑

j∈D(H1)
j 6=1

η∆
[(
CN (H1+j)− C1(H1+j)

)
−
(
CN (H1)− C1(H1)

)]

+(1− δ)(CN (H1)− C1(H1))− kλ∆
(
CN (H1)− C1(H1)

)
− η∆

(
CN (H1)− C1(H1)

)]
(OA.A60)

− ptut (H
1
)




∑

j∈ND(H
1
)

j 6=N

λ∆
[
CN (H

1−j
)− C1(H

1−j
)

−
(
CN (H

1
)− C1(H

1
)
)]

+
∑

j∈D(H
1
)

j 6=1

η∆
[
CN (H

1+j
)− C1(H

1+j
)−

(
CN (H

1
)− C1(H

1
)
)]

+(1− δ)(CN(H
1
)− C1(H

1
))− λ∆

(
CN (H

1
)− C1(H

1
)
)
− η∆

(
CN (H

1
)− C1(H

1
)
)]

(OA.A61)

Using the homogeneous dividends assumption iii), we have CN (H1)−C1(H1) = C1(H
1
)−CN (H

1
), CN (H1−j)−

C1(H1−j) = C1(H
1−j

)− CN (H
1−j

) if j 6= 1, N , CN (H1+j)− C1(H1+j) = C1(H
1+j

)− CN (H
1+j

), if j 6= 1, N .

Moreover ND(H1) excluding N coincides with ND(H
1
) excluding 1, and D(H1) excluding 1 coincides with

D(H
1
) excluding N. These facts allow to collect terms in (OA.A61) and obtain (OA.A33). �
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Lemma 3. The condition k∗(λ, η, kh, kl) < k < k∗∗, where k∗∗ solves

1−Kλ(k + 1)∆−Kη∆ = 0 (OA.A62)

is sufficient for

lim
N→∞

RN −R1 ≥ 0 (OA.A63)

to hold.

By virtue of (OA.A26) and (OA.A27):

RN −R1 =
N∑

j=1

λ̃j(Ht)θ
j(Ht)

[
1
′
(H±j

t )
∞∑

u=0

exp(−(a−AH)(tu − t))
(
AN −A1

)
]

=
(
RN

ND −R1
ND

)
+ λ1(Ht)θ

1(Ht)
∞∑

u=0

e−δ(tu−t)

[
∑

H1

Prob
(
Htu = H1

∣∣H−1
t

) (
AN (H1)−A1(H1)

)

+
∑

H
1

Prob
(
Htu = H

1
∣∣∣H−1

t

)(
AN (H

1
)−A1(H

1
)
)



+λN (Ht)θ
N (Ht)

∞∑

u=0

e−δ(tu−t)

[
∑

H1

Prob
(
Htu = H1

∣∣H−N
t

) (
AN (H1)−A1(H1)

)

+
∑

H
1

Prob
(
Htu = H

1
∣∣∣H−N

t

)(
AN (H

1
)−A1(H

1
)
)

 (OA.A64)

with

RN
ND −R1

ND =
N∑

j=1
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)

(
∑

H1

Prob
(
Htu = H1

∣∣H±j
t

) (
AN (H1)−A1(H1)

)

+
∑

H
1

Prob
(
Htu = H

1
∣∣∣H±j

t

)(
AN (H

1
)−A1(H

1
)
)

 (OA.A65)

Note that in the expression for RN
ND − R1

ND, in states H±j
t firms 1 and N are necessarily both not in distress,

because in the initial state Ht they are not by assumption. Also note that the only relevant states at time tu in

expression (OA.A64), are necessarily the paired states of the form H1 and H
1
of Lemma 2: any state of (non)

distress for the economy excluding firms 1 and N gives rise to four states; two of them are paired states H1

and H
1
, and in the remaining two firm 1 and N are both in distress or both not in distress. In the latter case

expression AN (H)−A1(H) vanishes, according to Lemma 1. Using (OA.A33) of Lemma 2, expression (OA.A65)
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reads explicitly:

RN
ND −R1

ND =
N∑

j=1
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)
∑

H1

U(H1, u)

U(H1, u) =
{[

kProb
(
Htu = H1

∣∣Ht

)
− Prob

(
Htu = H

1
∣∣∣Ht

)]
λ∆×




∑

v∈ND(H1)
v 6=N

(
CN (H1−v)− C1(H1−v)−

(
CN (H1)− C1(H1)

))
−
(
CN (H1)− C1(H1)

)



+
[
Prob

(
Htu = H1

∣∣Ht

)
− Prob

(
Htu = H

1
∣∣∣Ht

)] [
(1− δ)(CN (H1)− C1(H1))+

∑

v∈D(H1)
v 6=1

η∆
((
CN (H1+v)− C1(H1+v)

)
−
(
CN (H1)− C1(H1)

))
− η∆

(
CN (H1)− C1(H1)

)







(OA.A66)

Letting N → ∞, we distinguish three possible cases concerning a given state H1:

1. limN→∞ num
(
ND(H1)

)
= ∞, limN→∞ num

(
D(H1)

)
= K, for some finite integer K.

Setting:

K1
n =

∑

v∈ND(H1)
v 6=N

(
CN (H1−v)− C1(H1−v)−

(
CN (H1)− C1(H1)

))
, (OA.A67)

we have

∑

v∈ND(H1)
v 6=N

(
CN (H1−v)− C1(H1−v)−

(
CN (H1)− C1(H1)

))
−
(
CN (H1)− C1(H1)

)
= K1(N)+o(K1(N)) ≥ 0

(OA.A68)

and

(1− δ)(CN (H1)− C1(H1)) +
∑

v∈D(H1)
v 6=1

((
CN (H1+v)− C1(H1+v)

)
−
(
CN (H1)− C1(H1)

))

−
(
CN (H1)− C1(H1)

)
= o(K1(N)) (OA.A69)

for N large. The sign of the RHSs in (OA.A68) derives from the fact that CN (H1−v) − C1(H1−v) ≥

CN (H1)−C1(H1) for γ > 1. Due to (OA.A30) and (OA.A31) we can conclude that limN→∞ U(H1, u) ≥ 0.

2. limN→∞ num
(
D(H1)

)
= ∞, limN→∞ num

(
ND(H1)

)
= K, for some finite integer K.
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Setting:

K2
n =

∑

v∈D(H1)
v 6=1

(
CN (H1)− C1(H1)−

(
CN (H1+v)− C1(H1+v)

))
, (OA.A70)

we have

(1− δ)(CN (H1)− C1(H1)) +
∑

v∈D(H1)
v 6=1

((
CN (H1+v)− C1(H1+v)

)
−
(
CN (H1)− C1(H1)

))

−
(
CN (H1)− C1(H1)

)
= −[K2(N) + o(K2(N))] ≤ 0 (OA.A71)

for N large, and

∑

v∈ND(H1)
v 6=N

(
CN (H1−v)− C1(H1−v)−

(
CN (H1)− C1(H1)

))
−
(
CN (H1)− C1(H1)

)
= o(K2(N))

(OA.A72)

The sign of the RHSs in (OA.A71) derives from the fact that CN (H1+v)−C1(H1+v) ≤ CN (H1)−C1(H1)

for γ > 1. Since K2(N) is bounded ∀N because of Assumption 1 and (OA.A21), claims (OA.A30) and

(OA.A31) let us conclude that limN→∞ U(H1, u) = 0.

3. limN→∞ num
(
D(H1)

)
= ∞, limN→∞ num

(
ND(H1)

)
= ∞. By the reasoning as above: limN→∞ U(H1, u) ≥

0.

We then have

lim
N→∞

RN
ND −R1

ND ≥ 0 (OA.A73)

It is clear from (OA.A64) and (OA.A73) that

lim
N→∞

RN −R1 = RN
ND −R1

ND + o(RN
ND −R1

ND), (OA.A74)

because, by the assumption that in the initial state Ht firm 1 and N are not in distress, there are only two states

H±j
t where firm 1 or firm N is in distress, regardless of N . �

Using (OA.A63) we obtain:

lim
N→∞


µN

t −
N∑

j=1

λ̃j


PN (Ht) = lim

N→∞
−RN ≤ lim

N→∞
−R1 = lim

N→∞


µ1

t −
N∑

j=1

λ̃j


P 1(Ht) (OA.A75)

so that

lim
N→∞


µN

t −
N∑

j=1

λ̃j


 ≤


µ1

t −
N∑

j=1

λ̃j


 P 1(Ht)

PN (Ht)
≤ lim

N→∞


µ1

t −
N∑

j=1

λ̃j
N


 (OA.A76)

The last inequality follows from the fact that PN (Ht) > P 1(Ht) for large N , which is a consequence of the
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reasoning above, once we notice that

PN (Ht)− P 1(Ht) = 1
′
(Ht)

∞∑

u=0

exp(−(a−AH)(tu − t))
(
AN −A1

)
, (OA.A77)

and that firms 1 and N are not in distress in Ht. We can conclude that µ1
t ≥ µN

t for N large.

�
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Online Appendix B

Dividend and Earnings portfolio series. Once stocks are assigned to portfolios, we collect annual data on

their earnings-per-share before extraordinary items (Compustat EPSPX), and quarterly data on their cash-flow

distributions, namely total dividends (Compustat DVT), repurchases of common and preferred stock (Compustat

PRSTKC) and the redemption value of the preferred stock (Compustat PSTKRV), as well as the number of

shares outstanding. As for beta, size, and book-to-market, we avoid including forward looking information by

using only previous fiscal year cash-flow distributions. We follow the procedure outlined in Menzly, Santos, and

Veronesi (2004), Hansen, Heaton, and Li (2002) and Bansal, Dittmar, and Lundblad (2002), to build the portfolio

earnings and cash-flow series that take into account shares repurchases and redemptions, and that are consistent

with value-weighted holdings of stocks in portfolios. Let j = 1, . . . , 100 denote a given portfolio, Ωj
t the collection

of stocks in that portfolio at month t, and V j
t its market value. Let t be the portfolio updating date (July of each

year).

• At time t, for each stock i ∈ Ωj
t we find the number of shares θit that satisfies the value-weighting condition.

• During the quarter running from t to t+ 1, total cash-flows accruing to portfolio j are:

Dj
t,t+1 =

∑

i∈Ωj
t

θit
DV T i

t+1 + PRSTKCi
t+1 − (PSTKRV i

t+1 − PSTKRV i
t )

N i
t

,

where N i
t denotes the number of firm’s i shares outstanding at time t. The total earnings of the portfolio

are:

Ej
t,t+1 =

∑

i∈Ωj
t

θit EPSPXi
t+1,

• If repurchases or redemptions occur for stock i during the quarter, the number of shares held is updated

in percentage of the total repurchase/redemption, excluding potential new issues:

θit+1 = θit
N i

t − [PRSTKCi
t+1 − (PSTKRV i

t+1 − PSTKRV i
t )]/P

i
t+1

N i
t

.

The numerator is the total number of shares outstanding at the beginning of next quarter before new

issues.

• At t + 1, the ex-dividend market value of portfolio j is V j
t+1 =

∑
i∈Ωj

t+1
θit+1P

i
t+1. The quarterly total

return on the portfolio is Rj
t+1 = (V j

t+1 +Dj
t,t+1 − V j

t )/V
j
t . Ω

j
t+1 coincides with Ωj

t , until date t+ 4, when

the portfolio composition is updated and the procedure repeated.

• As in Menzly, Santos, and Veronesi (2004): we assume an initial investment in portfolio j, V j
0 , corresponding

to the market capitalization of the portfolio per US capita: V0 =
∑

i∈Ωj
0
N i

0P
i
0/pop(0).

3 pop(0) is the US

population at time 0, June 1953; we assume that the consumption flow Ct is the per-capita US total

consumption expenditure of non-durables plus services, as reported, already deflated and deseasoned, by

National Income and Product Accounts (NIPA).

We deseason the cash-flow series using a four quarter trailing moving average. �

3Without loss of generality we have multiplied this figure by 100.
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Characteristics of Average Portfolio Returns. We provide a brief description of the characteristics of

portfolio average monthly returns, which are largely consistent with known stylized facts.

Insert Table II

Average returns, reported in Table II, display a strong decreasing pattern along the size dimension: as size

increases from the first to the 10th decile, the average portfolio return decreases monotonically from 3.1% to 0.4%

per month, with a t-statistics of -6.31 for this difference.4 In contrast, it is hard to observe any pattern along the

beta dimension: not only we do not observe a consistently increasing pattern, but high beta stocks do not appear

to earn significantly larger returns at all, as the difference between the average return of the 10th and the 1st

decile has a t-statistics of -0.53. We have also explored results of a stratification into beta and book-to-market

portfolio deciles. Average returns are in Table IV: as expected, average returns are monotonically increasing in

the book-to-market dimension, ranging from 0.05% of the first decile to 3.4% of the last, with a t-statistics of 7.1

for this difference. The value-premium puzzle is apparent from the table, where average returns are increasing

in book-to-market not only unconditionally, but also within any beta portfolio decile. We have also confirmed

the accuracy of the sorting procedure by looking at the portfolio betas obtained from time series regressions on

the whole sample (the “post ranking betas”in the terminology of Fama-French (1992)): ex-post portfolio betas

are consistent with the ex-ante betas of the ranked stocks (Table III in Online Appendix). Moreover, variation

across the size dimension confirms the well known fact that beta is inversely correlated with size. When we sort in

the book-to-market dimension (tables are available from the authors) we find that both value and growth stocks

have larger post-ranking betas than median book-to-market deciles. Again, this nonmonotonicity of betas across

book-equity/market-equity captures a well know tension in the CAPM.

Parameters’ Standard Errors. Let θ∗ denote the Maximum Likelihood estimator of θ, namely the parameter

set achieving the maximum in (40) of the paper, and θ0 the true parameter set. The asymptotic arguments

developed for the Simulated Maximum Likelihood estimator of Brandt and Santa-Clara (2002) let us conclude

that, as T → ∞:

(θ∗ − θ0) ∼ N(0, I−1(θ0)), I(θ0) = E

[
−

T∑

t=1

N∑

i=1

∂2 log φ(Êi
t − Ei

t |θ)

∂θ∂θ′

]
(OA.B1)

where I is the Fisher information matrix and ∂2 logφ
∂θ∂θ′ denotes the Hessian matrix with respect to θ of the likelihood

function. It is well known that I(θ0) is also:

I(θ0) = E

[
T∑

t=1

N∑

i=1

∂ log φ(Êi
t − Ei

t |θ)

∂θ

∂ log φ(Êi
t − Ei

t |θ)

∂θ

′]
(OA.B2)

where ∂ logφ
∂θ

is the gradient of the log-likelihood. We approximate (OA.B2) by Monte-Carlo simulation and finite

difference. For an initial state H0(i), we simulate np = 3000 trajectories of T quarters for Ht (hence portfolio

4Standard deviations of portfolio returns are not tabulated, but available upon request.
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earnings), each starting at H0(i), and approximate the conditional Fisher information as:

E

[
T∑

t=1

N∑

i=1

∂ log φ(Êi
t − Ei

t |θ)

∂θ

∂ log φ(Êi
t − Ei

t |θ)

∂θ

′∣∣∣∣∣H0 = H0(i)

]
=

1

np

np∑

w=1

T∑

t=1

N∑

i=1

log φ(Êi
t − Ei

t(w)|θ + ǫ)− log φ(Êi
t − Ei

t(w)|θ − ǫ)

2ǫ

log φ(Êi
t − Ei

t(w)|θ + ǫ)− log φ(Êi
t − Ei

t(w)|θ − ǫ)

2ǫ

′

(OA.B3)

where Ei
t(w) denotes the w − th simulated earnings path. We then compute the steady state distribution π of

all 2N Ht(i) states , as in (OA.A13) and apply the law of iterated expectations to approximate the unconditional

Fisher information matrix:

E

[
T∑

t=1

N∑

i=1

∂ log φ(Êi
t − Ei

t |θ)

∂θ

∂ log φ(Êi
t − Ei

t |θ)

∂θ

′]
=

2N∑

u=1

πuE

[
T∑

t=1

N∑

i=1

∂ log φ(Êi
t − Ei

t |θ)

∂θ

∂ log φ(Êi
t − Ei

t |θ)

∂θ

′
∣∣∣∣∣H0 = H0(u)

]
(OA.B4)

In practice, we find that the parameter estimate θ∗ implies that a subset H1 of states H0(i) accounts for more

that p1 = 98% of the total unconditional probability mass π. We consider only this subset in the approximation

(OA.B4).

Standard errors of network parameters are in Table V.
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Online Appendix C: The Failure of the Two-Fund Separation

Property

The cross-sectional heterogeneity in the connectivity among different firms has immediate implications for the

two-fund separation property of asset prices.

Proposition OA.C 1. Consider a sequence of economies indexed by the total number of firms, N , where firms’

characteristics satisfy Assumption 3 and Assumption 4 below.

If the network is symmetric, as in Figure 1, two fund-separation holds as N → ∞ : assets’ risk-premia have

an exact one-factor representation. If the network is asymmetrically connected, two fund separation does not hold.

In the ‘Star’ form of Figure 2a, three fund-separation holds as N → ∞: firms’ risk-premia are linear combinations

of the central firm’s (firm 1) risk premium and of an additional risk factor.

In a completely homogeneous economy, where also dividend jumps are the same across trees in the limit of

N → ∞, it is well known that expected returns are equal to the sum of two components: (a) the risk free rate and

(b) the marginal contribution of the asset to the variance of the market portfolio. Idiosyncratic risk is not priced.

The main reason is that for N → ∞ the market portfolio can diversify away firm-specific shocks, so that these

will not bear any risk premium. Indeed this is the case for the disconnected network structure described in Figure

1a. In Figure 1b instead, where network connections are identical, shocks are only systematic, in that they have

perfect correlation with shocks to the market portfolio when N grows arbitrarily large. While two-fund separation

holds in these cases, it does not hold for the ‘Star’ network in Figure 2a. The intuition is simple: since firm 1

is dominant in the network, even for N → ∞ the market portfolio is not able to diversify away its firm-specific

risk. This result holds more generally: networks with a large cross-sectional dispersion in centrality do not satisfy

the two fund separation property and firm-specific risk matters in equilibrium asset prices. Figure 2b reports a

typical clustered economy. There are N connected central firms, each with its own ‘Star’ subnetwork. Noncentral

firms are disconnected among them and relate homogeneously to their ‘Star’. The next Corollary generalizes

Proposition OA.C 1 to this situation.

Corollary OA.C 1. If the same assumptions of Proposition OA.C 1 hold, and the network is of the clustered

‘Star’ form of Figure 2b, with N ‘Star’ firms, 2N + 1−fund separation holds as the number of noncentral firms

in each subnetwork grows arbitrarily large and N remains finite.

This result states that every central firm is a source of priced risk both because of its own idiosyncratic

distress risk, and because of the idiosyncratic risk that is complementary to it. Noncentral firms are affected in

distinct forms by their ‘Star’, even when ‘Stars’ are symmetrically connected, which creates independent forms

of complementarity. Indeed, with additional assumptions – such as (9) in the one-star case – we could conjecture

that the firm with the tightest links to its network – the most locally exogenous – has the larger expected return

among the central firms, thus of all the economy, in light of Proposition 3. The intuition is that this firm suffers

smaller consumption growth during its distress state, and the latter is the most systematic risk factor for the

economy. Similarly, it is reasonable to expect that the firm most affected by its ‘Star’ has larger risk premium

among noncentral firms, as its non idiosyncratic (‘Star’-related) distress is shared by more subnet peers on average,

which makes it more correlated with consumption risk.

Proof of Proposition OA.C 1. We use the same notation of the proof of Proposition 3. H will denote a

generic realization of H. Assumptions 1 and Assumption 2 of Proposition 3 are replaced by the following:
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Assumption 3. Dividends are deterministic functions of the economy size N , and asymptotically homogeneous:

xi
t(H) =

{
f
i
(N) if Hi

t = 0

f i(N) if Hi
t = 1

i = 1, . . . N (OA.C1)

with limN→∞ xi
t(H) = limN→∞ xj

t (H), ∀i, j. Moreover

lim
N→∞

( ∑N
j=1 x

j
t (H)

∑N
j=1 x

j
t (Ht)

)−γ

xi
t(H)

xi
t(Ht)

= c(H,Ht) (OA.C2)

with 0 < ci(H,Ht) < ∞, for all possible states H.

Assumption 4. For a given economy size N , intensities λi(H) and ηj(H), j = 1, . . . , N are independent

conditionally on the state H, and they are realizations of common (across firms) distributions Fλ(N,H) and

F η(N,H). These distributions are such that the following condition holds

limN→∞

∑N
v=1 λ

v(H) = Kλ(H) < ∞

limN→∞

∑N
v=1 η

v(H) = Kη(H) < ∞
(OA.C3)

which implies

lim
N→∞

λi(H) = lim
N→∞

ηi(H) = 0 ∀H, i = 1, . . . , N (OA.C4)

For simplicity we drop the dependence on N from the λi( · ), η( · ) and xi
t( · ).

Consider an initial state Ht and an economy size N . Following the lines of the proof of Proposition 3, we

redefine Ri as

Ri =

N∑

j=1

λ̃j(Ht)θ
j(Ht)

[
1
′
(H±j

t )

∞∑

u=0

exp(−(a−AH)(tu − t))Aci

]

= Ri
ND + λi(Ht)θ

i(Ht)

∞∑

u=0

e−δ(tu−t)

[
∑

H

Prob
(
Htu = H|H−i

t

)
Ai(H)

]
(OA.C5)

The reason to partition Ri in (OA.C5) is to isolate the only term where firm i is in distress in H±j
t . We have set

Ri
ND =

N∑

j=1
j 6=i

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)

(
∑

H

Prob
(
Htu = H|H±j

t

)
Ai(H)

)
(OA.C6)

ci = Ci/xi
t(Ht) is the vector of dividends paid by firm i in each possible state H, discounted by the marginal rate

of intertemporal substitution, and scaled by the current dividend xi
t(Ht). We denote by ci(H) the entry of vector

ci corresponding to state H. We have also set Ai = Aci, with Ai(H) the entry of this vector corresponding to

state H. We use the familiar representation for the risk premium of the i−th equity security:5


µi

t −
N∑

j=1

λ̃j


 P i(Ht)

xi
t(Ht)

= −Ri (OA.C7)

5Remind that λ̃i = Hi
tη

i + (1−Hi
t)λ

i
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In particular, we consider the limit limN→∞ Ri1 −Ri2 , for any pair of firms i1 and i2.

For convenience, the two symmetric networks of Figure 1, disconnected and fully connected, are considered

first and last respectively, while the ‘Star’ network of Figure 2 is considered in between.

‘Disconnected’ Network of Figure 1a.

If firms are not connected, the distribution of firms’ intensity parameters is independent of the state H, so that

λi(Ht) = λi and ηi(Ht) = ηi, i = 1, . . . , N , are independent and with identical distributions Fλ(N) and F η(N),

respectively.

Lemma 1 holds in this context, therefore we need only consider paired states Hi1 and H
i1
, having all firms’

(distress or not) states in common, except for firms i1 and i2: the former is in distress in Hi1 but not in H
i1
.

The converse holds for i2.

As in (OA.A66) of Proposition 3, taking into account that k = 1 and the asymptotic homogeneity of dividends

in Assumption 4, we have, for N large:

Ri2
ND −Ri1

ND =
N∑

j=1
j 6=i1,i2

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)
∑

Hi1

U(Hi1 , u)

U(Hi1 , u) =
[
Prob

(
Htu = Hi1

∣∣H±j
t

)
− Prob

(
Htu = H

i1
∣∣∣H±j

t

)]
B1(Hi1)

+
[
Prob

(
Htu = Hi1

∣∣H±j
t

)
− Prob

(
Htu = H

i1
∣∣∣H±j

t

)]
B2(Hi1) (OA.C8)

B1(Hi1) =




∑

v∈ND(Hi1 )
v 6=i2

λv∆
(
ci2(Hi1−v)− ci1(Hi1−v)−

(
ci2(Hi1)− ci1(Hi1)

))

︸ ︷︷ ︸
1

−

(
λi2 − λi1

) (
ci2(Hi1)− ci1(Hi1)

)
∆

︸ ︷︷ ︸
2




B2(Hi1) = (1− δ)(ci2(Hi1)− ci1(Hi1))−∆
(
ηi1ci2(Hi1)− ηi2ci1(Hi1)

)
︸ ︷︷ ︸

3

+
∑

v∈D(Hi1 )
v 6=i1

ηv∆
[(
ci2(Hi1+v)− ci1(Hi1+v)

)
−
(
ci2(Hi1)− ci1(Hi1)

)]

︸ ︷︷ ︸
4

As N → ∞, given a generic Hi1 , we have either limN→∞ ND(Hi1) = K, for some integer K < ∞, or

limN→∞ ND(Hi1) = ∞. In the former case, limN→∞ B1(Hi1) = 0 because of Assumption 1 and (OA.C4). In the

latter, B1(Hi1) is an infinite sum of independent random variables, because of Assumption 1. We assume that Fλ

and (f(N), f(N)) are such that the Lindberg condition – see Durret (1995) – is satisfied, which is not restrictive

in light of (OA.C4) and (OA.A19). The Lindberg-Feller theorem then mandates that limN→∞ B1(Hi1) = ǫ1,

where ǫ1 ∼ N(µ1, σ1).
6 Similarly, we either have B2(Hi1) ≈ 0 or B2(Hi1) ≈ ǫ2 ∼ N(µ2, σ2) for N large. We now

6Mean and variance parameters do not play a specific role, hence we leave them unspecified.
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show that

lim
N→∞

Prob
(
Htu = Hi1

∣∣H±j
t

)
− Prob

(
Htu = H

i1
∣∣∣H±j

t

)
= 0 (OA.C9)

We refer to the proof of Lemma 2 above, where we set k = 1, because the network is disconnected, as assign its

own λj (ηj) to the distress (recovery) event of firm j, instead of having homogeneous parameters. Terms 1 and

2 in (OA.A40) become:

ptu−∆
t (Hi1+i1)

(
1− e−λi1∆

)
− ptu−∆

t (Hi1+i1)
(
1− e−λi2∆

)

︸ ︷︷ ︸
1

(OA.C10)

ptu−∆
t (Hi1−i2)

(
1− e−ηi2∆

)
− ptu−∆

t (Hi1−i2)
(
1− e−ηi1∆

)

︸ ︷︷ ︸
2

For N large, (OA.C4) implies λi2 ≈ λi1 ≈ ηi2 ≈ ηi1 ≈ 0, so that term 1 ≈ term 2 ≈ 0. Terms 1 and 2 of (OA.A43)

become

ptu−2∆
t (Hi1+i1)

[(
1− e−λi1∆

)
e−[

∑
v∈D(H1) η

v+
∑

v∈ND(H1) λ
v]∆

︸ ︷︷ ︸
(OA.C11)

−
(
1− e−λi2∆

)
e−[

∑
v∈D(H1) η

v+
∑

v∈ND(H1) λ
v]∆
]
λ∆

︸ ︷︷ ︸
1

(OA.C12)

+ ptu−2∆
t (Hi1−i2)

[(
1− e−ηi2∆

)
e−[

∑
v∈D(H1) η

v+
∑

v∈ND(H1) λ
v]∆

︸ ︷︷ ︸
(OA.C13)

−
(
1− e−ηi1∆

)
e−[

∑
v∈D(H1) η

v+
∑

v∈ND(H1) λ
v]∆
]
λ∆

︸ ︷︷ ︸
2

(OA.C14)

As N → ∞, the summations at the exponentials in square brackets converge to the same limit. Term 3 in

(OA.A43) becomes

lim
N→∞

[(
1− e−λi1∆

)
−
(
1− e−λi2∆

)] ∑

v∈D(Hi1 )
v 6=1

ptu−2∆
t (Hi1+v+i1)

(
1− e−λv∆

)
= 0, (OA.C15)

because λi1 ≈ λi2 and Assumption 4 guarantees that the summation converges to a bounded limit. The same

reasoning applies to terms 4-6 in expression (OA.A43), and to terms of this type that arise from further backward

substitutions (see the proof of Lemma 2). The rest of the proof is unchanged. Since ptt(H) = 0 for any H of the

type Hi1 and H
i1
, by the assumption that i1 and i2 are not in distress in H±j

t , the limit (OA.C9) follows. In

light of (OA.C8) we have

lim
N→∞

Ri2
ND −Ri1

ND = 0, (OA.C16)

so that

lim
N→∞

Ri2 −Ri1 =
∑

j=i1,i2

λjθj(Ht)
∞∑

u=0

e−δ(tu−t)
∑

Hi1

{[
Prob

(
Htu = Hi1

∣∣H−j
t

)
− Prob

(
Htu = H

i1
∣∣∣H−j

t

)]
×

×B1(Hi1) +
[
Prob

(
Htu = Hi1

∣∣H−j
t

)
− Prob

(
Htu = H

i1
∣∣∣H−j

t

)]
B2(Hi1)

}
(OA.C17)
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We now show that

lim
N→∞

Prob
(
Htu = Hi1

∣∣H−i1
t

)
− Prob

(
Htu = H

i1
∣∣∣H−i1

t

)

= − lim
N→∞

Prob
(
Htu = Hi1

∣∣H−i2
t

)
− Prob

(
Htu = H

i1
∣∣∣H−i2

t

)
(OA.C18)

We proceed as with the proof of (OA.C9), starting from (OA.A40) – after the proper modifications: k = 1 and

firm specific intensities – and canceling terms 1 and 2, then canceling terms 1-6 in (OA.A43), until we arrive at

ptut (Hi1)− ptut (Hi1) ≈ RHS of (OA.A45) (OA.C19)

for N large. H−i1
t is of the form Hi1 , while H−i2

t is of the form H
i1
, therefore letting m = N∆ on the RHS of

(OA.A45) it must be

(∗) Prob
(
Htu = Hi1

∣∣H−i1
t

)
− Prob

(
Htu = H

i1
∣∣∣H−i1

t

)
= T 0(m,Hi1)

(∗∗) Prob
(
Htu = Hi1

∣∣H−i2
t

)
− Prob

(
Htu = H

i1
∣∣∣H−i2

t

)
= −T 0(m,H

i1
)

or

(∗) =
∑

w1=+1,−1

∑

v1∈Sw1 (Hi1)
v1 6=l(w1)

T 1
w1

(m,Hi1 , v1)

(∗∗) = −
∑

w1=+1,−1

∑

v1∈Sw1 (H
i1 )

v1 6=l(w1)

T 1
w1

(m,H
i1
, v1)

or

(∗) =
∑

w1=+1,−1

∑

v1∈Sw1 (Hi1 )
v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (Hi1+w1v1 )
v2 6=l(w2)

T 2
w1,w2

(m,Hi1 , v1, v2)

(∗∗) = −
∑

w1=+1,−1

∑

v1∈Sw1 (H
i1 )

v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H
i1+w1v1 )

v2 6=l(w2)

T 2
w1,w2

(m,H
i1
, v1, v2)

or

. . .

. . . (OA.C20)

Notice that any set of the form Sw1(Hi1), excluding l(w1), coincides with Sw1(H
i1
) excluding l(w1). Notice

also that limN→∞ T 0(m,Hi1) = limN→∞ T 0(m,H
i1
), limN→∞ T 1

w1
(m,Hi1 , v1) = limN→∞ T 1

w1
(m,H

i1
, v1), and

so on: considering expressions (OA.A46)-(OA.A50), we notice that terms of the form (1− exp(−ωi∆)), ω = λ, η

become independent of the specific firm i because of (OA.C4). We can conclude that (OA.C18) holds. Considering

expression (OA.C17), it is clear that (OA.C18) and the fact that λi1 ≈ λi2 for N large (because of (OA.A21))

imply that

lim
N→∞

Ri2 −Ri1 = 0. (OA.C21)
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Thus

lim
N→∞


µi1

t −
N∑

j=1

λ̃j


 P i1(Ht)

xi1
t (Ht)

= lim
N→∞


µi2

t −
N∑

j=1

λ̃j


 P i2(Ht)

xi2
t (Ht)

(OA.C22)

Since any two risk premia can be expressed asymptotically as a linear combination of each other, an exact one

factor asymptotic structure holds for the expected returns of firms not currently in distress.

‘Star’ Network of Figure 2.

Firms’ intensity parameters are independent only conditionally on a given state of aggregate (non) distress H.

Thus parameters on the same row of the transition matrix AH are mutually independent, but parameters on

different rows are correlated. To model the ‘star’ network of Figure 2, let H1 denote the states where firm 1 (the

central firm) is in distress, and H1 the states where it is not. Then:

λi(H1) = kλi, k > 1, i = 2, . . . , N (OA.C23)

λi(H1) = λi ∼ Fλ(N), i = 1, . . . , N (OA.C24)

η(H1) = η(H1) = ηi ∼ F η(N), i = 1, . . . , N (OA.C25)

Let N denote a generic noncentral firm. Then, from the previous case:

lim
N→∞

RN
ND −R1

ND = lim
N→∞

N∑

j=1
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)
∑

H1

U(H1, u)

U(H1, u) =
[
kProb

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]
ǫ1(H1)

+
[
Prob

(
Htu = Hi1

∣∣H±j
t

)
− Prob

(
Htu = H

i1
∣∣∣H±j

t

)]
ǫ2(H1)

ǫ1(H1) =

{
0 if limN→∞ ND(H1) = K < ∞

ǫ1 ∼ N(µ1, σ1) if limN→∞ ND(H1) = ∞

ǫ2(H1) =

{
0 if limN→∞ D(H1) = K < ∞

ǫ2 ∼ N(µ2, σ2) if limN→∞ D(H1) = ∞
(OA.C26)

Because of Assumption 4, Lemma 2 in the proof of Proposition 3 holds in the present context. Let

ǫ1D = λN (Ht)θ
N (Ht)

∞∑

u=0

e−δ(tu−t)

[
∑

H

Prob
(
Htu = H|H−N

t

)
AN (H)

]

− lim
N→∞

λ1(Ht)θ
1(Ht)

∞∑

u=0

e−δ(tu−t)

[
∑

H

Prob
(
Htu = H|H−1

t

)
A1(H)

]
(OA.C27)

Since N was an arbitrary noncentral firm, and all noncentral firms are identical, the random variable ǫ1D does not

depend on N. The same reasoning applies to limN→∞ RN
ND −R1

ND. Then

RN −R1 = RN
ND −R1

ND + ǫ1D = ε1 (OA.C28)
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for N large, and

lim
N→∞


µ1

t −
N∑

j=1

λ̃j


 P 1(Ht)

x1
t (Ht)

= lim
N→∞


µN

t −
N∑

j=1

λ̃j


 PN (Ht)

xN
t (Ht)

+ ε1 (OA.C29)

where ε1 depends only on firm 1. Expression (OA.C29) shows that for the ‘Star’ network of Figure 2, an asymptotic

three-fund separation holds.

Symmetrically Connected Network of Figure 1b.

In this case all firms are connected among each other, but the effect of a distress event on the rest of the firms

does not depend on the specific firm that experiences the distress. All firms are ‘central’ in an homogeneous way.

Without loss of generality, we model this network as follows:

λi(H) = k̃(H)λi, i = 1, 2, . . . , N (OA.C30)

λi(Hnd) = λi ∼ Fλ(N), i = 1, . . . , N (OA.C31)

η(H) = η(Hnd) = ηi ∼ F η(N), i = 1, . . . , N (OA.C32)

k̃(H) =

{
knum(D(H)) if num(D(H)) ≤ ND

kN
D

otherwise
k > 1, (OA.C33)

If no firm is in distress (state Hnd), firm distress intensities are iid. If some firm is in distress, these intensities

are compounded as many times as firms in distress at a common gross rate k, up to a maximum number ND. As

we are considering limiting behaviors as N → ∞, and distress propagation needs to occur at bounded intensity,

the boundedness assumption is necessary.

For two arbitrary firms 1 and N , since in the generic state H1 and its paired H
1
the same number of firms

are in distress, expression (OA.C26) becomes:

lim
N→∞

RN
ND −R1

ND = lim
N→∞

N∑

j=1
j 6=1,N

(1 + k̃(Ht)1(H
j
t = 0))λ̃j(Ht)θ

j(Ht)
∞∑

u=0

e−δ(tu−t)
∑

H1

U(H1, u)

U(H1, u) = k̃(H1)
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]
ǫ1(H1)

+
[
Prob

(
Htu = Hi1

∣∣H±j
t

)
− Prob

(
Htu = H

i1
∣∣∣H±j

t

)]
ǫ2(H1)

ǫ1(H1) =

{
0 if limN→∞ ND(H1) = K < ∞

ǫ1 ∼ N(µ1, σ1) if limN→∞ ND(H1) = ∞

ǫ2(H1) =

{
0 if limN→∞ D(H1) = K < ∞

ǫ2 ∼ N(µ2, σ2) if limN→∞ D(H1) = ∞
, (OA.C34)

We have

lim
N→∞

Prob
(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)
= 0 j = 1, . . . , N (OA.C35)
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We refer to the proof of Lemma 2. Terms 1 and 2 of (OA.A40) become

ptu−∆
t (H1+1)

(
1− e−k̃(H1+1)λ1∆

)
− ptu−∆

t (H1+1)
(
1− e−k̃(H1+1)λN∆

)

︸ ︷︷ ︸
1

(OA.C36)

ptu−∆
t (H1−N )

(
1− e−ηN∆

)
− ptu−∆

t (H1−N )
(
1− e−η1∆

)

︸ ︷︷ ︸
2

For N large, (OA.C4) implies λi2 ≈ λi1 ≈ ηi2 ≈ ηi1 ≈ 0, which together with the boundedness assumption

(OA.C33) implies term 1 ≈ term 2 ≈ 0. Terms 1 and 2 of (OA.A43) become

ptu−2∆
t (H1+1)

[(
1− e−k̃(H1)λ1∆

)
e−[

∑
v∈D(H1) η

v+
∑

v∈ND(H1) k̃(H
1)λv]∆

︸ ︷︷ ︸
(OA.C37)

−
(
1− e−k̃(H1)λN∆

)
e−[

∑
v∈D(H1) η

v+
∑

v∈ND(H1) k̃(H
1)λv]∆

]
λ∆

︸ ︷︷ ︸
1

(OA.C38)

+ ptu−2∆
t (H1−N )

[(
1− e−ηN∆

)
e−[

∑
v∈D(H1) η

v+
∑

v∈ND(H1) k̃(H
1)λv]∆

︸ ︷︷ ︸
(OA.C39)

−
(
1− e−η1∆

)
e−[

∑
v∈D(H1) η

v+
∑

v∈ND(H1) k̃(H
1)λv]∆

]
λ∆

︸ ︷︷ ︸
2

(OA.C40)

In light of (OA.C4) and (OA.C33), terms 1 and 2 also vanish for N large. The same reasoning applies to terms

1-6 in expression (OA.A43), and to the term of this type that arise from further backward substitutions (see the

proof of Lemma 2). The rest of the proof is unchanged. Since ptt(H) = 0 for any H of the type H1 and H
1
, by

the assumption that firm 1 and N are not in distress in H±j
t , the limit (OA.C35) follows, and

lim
N→∞

RN
ND −R1

ND = 0, (OA.C41)

so that

lim
N→∞

RN −R1 =
∑

j=1,N

k̃(Ht)λ
jθj(Ht)

∞∑

u=0

e−δ(tu−t)
∑

H1

{
k̃(H1)

[
Prob

(
Htu = H1

∣∣H−j
t

)
(OA.C42)

−Prob
(
Htu = H

1
∣∣∣H−j

t

)]
B1(H1)

+
[
Prob

(
Htu = H1

∣∣H−j
t

)
− Prob

(
Htu = H

1
∣∣∣H−j

t

)]
B2(H1)

}
(OA.C43)

We now show that

lim
N→∞

Prob
(
Htu = Hi1

∣∣H−1
t

)
− Prob

(
Htu = H

1
∣∣∣H−1

t

)

= − lim
N→∞

Prob
(
Htu = H1

∣∣H−N
t

)
− Prob

(
Htu = H

1
∣∣∣H−N

t

)
(OA.C44)

We proceed as with the proof of (OA.C9), starting from (OA.A40) – after the proper modifications: k = 1 outside

of exponentials, firm specific intensities of distress λik̃(Ht) and recovery ηi – and canceling terms 1 and 2, then
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canceling terms 1-6 in(OA.A43), until we arrive at

ptut (Hi1)− ptut (Hi1) ≈ RHS of (OA.A45) (OA.C45)

for N large. Term T 0(m,H) becomes

T 0(m,H) =





1 if m = 0

T 0(m− 1, H)e−[
∑

v∈D(H) η
v+

∑
v∈ND(H) k̃(H)λv]∆ otherwise

(OA.C46)

and similarly for higher order terms in (OA.A46)-(OA.A50). H−1
t is of the form H1, while H−N

t is of the form

H
1
, therefore letting m = N∆ on the RHS of (OA.A45) it must be

(∗) Prob
(
Htu = H1

∣∣H−1
t

)
− Prob

(
Htu = H

1
∣∣∣H−1

t

)
= T 0(m,H1)

(∗∗) Prob
(
Htu = H1

∣∣H−N
t

)
− Prob

(
Htu = H

1
∣∣∣H−N

t

)
= −T 0(m,H

1
)

or

(∗) =
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

T 1
w1

(m,H1, v1)

(∗∗) = −
∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

T 1
w1

(m,H
1
, v1)

or

(∗) =
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H1+w1v1 )
v2 6=l(w2)

T 2
w1,w2

(m,H1, v1, v2)

(∗∗) = −
∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H
1+w1v1 )

v2 6=l(w2)

T 2
w1,w2

(m,H
1
, v1, v2)

or

. . .

. . . (OA.C47)

Notice that any set of the form Sw1(H1), excluding l(w1), coincides with Sw1(H
1
) excluding l(w1). Notice also

that limN→∞ T 0(m,H1) = limN→∞ T 0(m,H
1
), limN→∞ T 1

w1
(m,H1, v1) = limN→∞ T 1

1 (m,H
1
, v1), and so on:

considering expressions (OA.A46)-(OA.A50), we notice that terms of the form (1 − exp(−ωi∆)), ω = k̃(H)λ, η

become independent of the specific firm i because of (OA.C4) and (OA.C33). We can conclude that (OA.C44)

holds. Considering expression (OA.C17), it is clear that (OA.C44) and the fact that k̃(Ht)λ
1 ≈ k̃(Ht)λ

2 for

N large (because of (OA.C4)) imply that limN→∞ RN ≈ limN→∞ R1, and that an exact conditional one factor

asymptotic structure holds for expected returns of the assets that are not currently in distress.

Proof of Corollary OA.C 1. We use the notation of the proof of Proposition 3. We model a clustered

economy with N central firms as follows: G is the collection of central firms; each firm j ∈ G is central for his own

subnetwork, which is organized as in Figure 2. NGj denotes the collection of noncentral firms in the subnetwork
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of j, with (NGj1

⋂
NGj2) = ∅, j1, j2 ∈ G. Central firms are all symmetrically interconnected for simplicity, as in

Figure 1b. We summarize this description as follows:

λi(H) = k̃i(H)λi, i = 1, 2, . . . , N (OA.C48)

λi = ∼ Fλ(N), i = 1, . . . , N (OA.C49)

η(H) = ηi ∼ F η(N), i = 1, . . . , N (OA.C50)

k̃i(H) =

{∏
v∈Dc(H) k0 if i ∈ G

kj if i ∈ NGj

k0, kj > 1, j ∈ G. (OA.C51)

The number of central firms is independent of the economy size N . Dc(H) denotes the set of central firms that

are in distress in state H. Therefore each central distress event compounds the distress risk of other central firms

at some homogeneous rate k0. Noncentral firms are affected only by the distress of their ‘Star’. Assumption 3

and Assumption 4 hold.

To identify an asymptotic factor structure of expected returns, we relate the risk premia of any two firms of

all possible types. As in Proposition OA.C 1 and Proposition 3, when we consider the risk premia of firms i and

j, it is convenient to decompose the space of possible states H into: i) paired states (Hi, H
i
) – i (j) is in distress

in the former (latter), but not in the latter (former), while the state of all other firms coincide –; ii) states H

where both i and j are not in distress; iii) states where they are both in distress. The following Lemma allows

to concentrate only on cases i) and ii).

Lemma 4. If firms i and j are both in distress in state H, then Ai(H)−Aj(H) = 0. If both are not in distress

in H, then

Ai(H)−Aj(H) =
(
k̃i(H)λi − k̃j(H)λj

)
∆
(
Ci(H−i)− Cj(H−i)

)
(OA.C52)

Proof. If i and j are both in distress, we have:

Ai(H)−Aj(H) =
∑

v∈ND(H)

k̃v(H)λv∆
[
ci(H−v)− cj(H−v)−

(
ci(H)− cj(H)

)]

−
∑

v∈D(H)
v 6=i,j

η∆
[
ci(H)− cj(H)−

(
ci(H+v)− cj(H+v)

)]
+ (1− δ)(ci(H)− cj(H))

− η∆
[
ci(H)− cj(H)−

(
ci(H+i)− cj(H+i)

)]
︸ ︷︷ ︸

1

− η∆
[
ci(H)− cj(H)−

(
ci(H+j)− cj(H+j)

)]
︸ ︷︷ ︸

2

(OA.C53)

ci(H) − cj(H) = 0, ci(H−v) − cj(H−v) = 0, ci(H+v) − cj(H+v) = 0, v 6= i, j, while terms 1 and 2 in (OA.C53)

are opposite, so that Ai(H)−Aj(H) = 0. If i and j are both not in distress, we have:

Ai(H)−Aj(H) =
∑

v∈ND(H)
v 6=i,j

k̃v(H)λv∆
[
ci(H−v)− cj(H−v)−

(
ci(H)− cj(H)

)]

−
∑

v∈D(H)

η∆
[
ci(H)− cj(H)−

(
ci(H+v)− cj(H+v)

)]
+ (1− δ)(ci(H)− cj(H))

− λik̃i(H)∆
[
ci(H)− cj(H)−

(
ci(H−i)− cj(H−i)

)]
︸ ︷︷ ︸

1

−λj k̃j(H) η∆
[
ci(H)− cj(H)−

(
ci(H−j)− cj(H−j)

)]
︸ ︷︷ ︸

2

(OA.C54)
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Again ci(H) − cj(H) = 0, ci(H−v) − cj(H−v) = 0, ci(H+v) − cj(H+v) = 0, v 6= i, j. (OA.C52) follows adding

terms 1 and 2 and taking into account that ci(H−i)− cj(H−i) = −(ci(H−j)− cj(H−j)). �

For ease of notation, we call firms 1 and N regardless of their type.

Firm 1 is central, Firm N is not

Let Hd denote a generic state where firms 1 and N are both in distress. Adapting (OA.A66) of Proposition 3

to the network characteristics reported in (OA.C48), keeping in mind the asymptotic homogeneity of dividends,

and taking Lemma 4 into account:

RN
ND −R1

ND =

N∑

v=j
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)

(
∑

H1

U1(H1, u) +
∑

Hd

U2(Hd, u)

)
(OA.C55)

U(H1, u) =
∑

u∈G
u 6=1

∑

v∈ND(H1)
v∈NGu

v 6=N

k̃v(H1)λv
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]
∆
(
cN (H1−v)− c1(H1−v)−

︸ ︷︷ ︸
(
cN (H1)− c1(H1)

))
︸ ︷︷ ︸

1

+
∑

v∈ND(H1)
v∈NG1
v 6=N

[
k1Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]
λv∆

(
cN (H1−v)− c1(H1−v)

︸ ︷︷ ︸

−
(
cN (H1)− c1(H1)

))
︸ ︷︷ ︸

2

−
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]

︸ ︷︷ ︸
×

×
(
λN k̃N (H1)− λ1k̃1(H1)

) (
cN (H1)− c1(H1)

)
∆

︸ ︷︷ ︸
3

+
∑

v∈ND(H1)
v∈G
v 6=1

k̃v(H1)λv
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]
∆
(
cN (H1−v)− c1(H1−v)−

︸ ︷︷ ︸
(
cN (H1)− c1(H1)

))
︸ ︷︷ ︸

4

+
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]

︸ ︷︷ ︸
×

×
[
(1− δ)(cN (H1)− c1(H1))−∆

(
ηNcN (H1)− η1c1(H1)

)
︸ ︷︷ ︸

+
∑

v∈D(H1)
v 6=1

ηv∆
((
cN (H1+v)− c1(H1+v)

)
−
(
cN (H1)− c1(H1)

))



︸ ︷︷ ︸
5

U2(Hd, u) = Prob
(
Htu = Hd|H

±j
t

)(
k̃N (Hd)λ

N − k̃1(Hd)λ
1
)
∆
(
cN (H−N

d )− c1(H−N
d )

)
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We note that k̃i(H) < ∞, ∀N , i = 1, . . . , N , because the number of central firms, N , is bounded by assumption.

Notice that the characteristics of the specific subnetwork of firm N enter only in term 3, which is o(term 2)

as N → ∞. By Assumptions 3 and 4, and the fact that Prob
(
Htu = H1

∣∣H±j
t

)
and Prob

(
Htu = H1

∣∣H±j
t

)

converge to a deterministic limit as N → ∞, terms 1, 2, 4, 5 are sums of independent random variables. We

also assume that the Linderg-Feller conditon holds. The Central Limit Theorem then guarantees asymptotic

convergence of the sum of these terms to a random variables which only depends on firm 1 characteristics,

because of the asymptotic behavior of term 3. Thus

lim
N→∞

∑

H1

U1(H1, u) = ǫ1u,j(1) (OA.C56)

Due to Assumptions 1 and 4,
∑

Hd
U2(Hd, u) is a sum of independent random variables. By the Central Limit

Theorem argument already applied in Proposition OA.C 1:

lim
N→∞

∑

Hd

U2(Hd, u) = ǫ2u,j(1, N) ∼ N(µ2
u,j , σ

2
u,j) (OA.C57)

The random variable ǫ2u,j(1, N) in general takes positive and negative values with nonzero probability. Its dis-

tribution depends on the centrality parameters ks. Thus, by means of (OA.C55), and again the Central Limit

Theorem argument

RN
ND −R1

ND ≈
N∑

v=j
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)
(
ǫ1u,j(1) + ǫ2u,j(1, N)

)
(OA.C58)

for N large. (OA.C58) then implies that

lim
N→∞

RN −R1 = lim
N→∞

RN
ND −R1

ND +
∑

j=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)

(
∑

H1

U1(H1, u) +
∑

Hd

U2(Hd, u)

)

(OA.C59)

Due to Assumption 4 λ̃1 ≈ λ̃N ≈ 0 for N large, while
(∑

H1 U1(H1, u) +
∑

Hd
U2(Hd, u)

)
converge to a random

variable that is bounded P−a.s, by virtue of Assumptions 3 and 4. We conclude that

lim
N→∞

RN −R1 =
N∑

v=j
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)
(
ǫ1u,j(1) + ǫ2u,j(1, N)

)
(OA.C60)

Firm 1 is central, Firm N is central (OA.C55) becomes

RN
ND −R1

ND =
N∑

v=j
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)

(
∑

H1

U1(H1, u) +
∑

Hd

U2(Hd, u)

)
(OA.C61)
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U(H1, u) =
∑

u∈G
u 6=1,N

∑

v∈ND(H1)
v∈NGu

k̃v(H1)λv
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]
∆
(
cN (H1−v)− c1(H1−v)−

︸ ︷︷ ︸
(
cN (H1)− c1(H1)

))
︸ ︷︷ ︸

1

+
∑

v∈ND(H1)
v∈NG1

[
k1Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]
λv∆

(
cN (H1−v)− c1(H1−v)

︸ ︷︷ ︸

−
(
cN (H1)− c1(H1)

))
︸ ︷︷ ︸

2

+
∑

v∈ND(H1)
v∈NGN

[
Prob

(
Htu = H1

∣∣H±j
t

)
− kNProb

(
Htu = H

1
∣∣∣H±j

t

)]
λv∆

(
cN (H1−v)− c1(H1−v)

︸ ︷︷ ︸

−
(
cN (H1)− c1(H1)

))
︸ ︷︷ ︸

3

−
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)](
λN k̃N (H1)− λ1k̃1(H1)

)
×

︸ ︷︷ ︸

×
(
cN (H1)− c1(H1)

)
∆

︸ ︷︷ ︸
4

+
∑

v∈ND(H1)
v∈G

v 6=1,N

k̃v(H1)λv
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]
∆×

︸ ︷︷ ︸

×
(
cN (H1−v)− c1(H1−v)−

(
cN (H1)− c1(H1)

))
︸ ︷︷ ︸

5

+
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]

︸ ︷︷ ︸
×

×
[
(1− δ)(cN (H1)− c1(H1))−∆

(
ηNcN (H1)− η1c1(H1)

)
︸ ︷︷ ︸

+
∑

v∈D(H1)
v 6=1

ηv∆
((
cN (H1+v)− c1(H1+v)

)
−
(
cN (H1)− c1(H1)

))



︸ ︷︷ ︸
6

U2(Hd, u) = Prob
(
Htu = Hd|H

±j
t

)(
k̃N (Hd)λ

N − k̃1(Hd)λ
1
)
∆
(
cN (H−N

d )− c1(H−N
d )

)

Due to terms 2 and 3, Assumptions 3 and 4 allow to apply the Central Limit Theorem, which guarantees

convergence of U1(H1, u) to a random variable – or more correctly, to a sum of random variables – that depends

on the characteristics of the central firms 1 and N. Taking into account that λ1 ≈ λN ≈ 0 for N large, we have :

lim
N→∞

RN −R1 = lim
N→∞

RN
ND −R1

ND +
∑

j=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)
∑

H1

U1(H1, u)

= lim
N→∞

RN
ND −R1

ND =

N∑

v=j
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)ǫ3u,j(1, N) (OA.C62)

Firm 1 is not central, Firm N is not central (OA.C55) becomes
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RN
ND −R1

ND =

N∑

v=j
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)

(
∑

H1

U1(H1, u) +
∑

Hd

U2(Hd, u)

)
(OA.C63)

U(H1, u) =
∑

v∈ND(H1)
v 6=N

k̃v(H1)λv
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)]
∆
(
cN (H1−v)− c1(H1−v)−

︸ ︷︷ ︸
(
cN (H1)− c1(H1)

))
︸ ︷︷ ︸

1

−
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)](
λN k̃N (H1)− λ1k̃1(H1)

) (
cN (H1)− c1(H1)

)
∆

︸ ︷︷ ︸
2

+
[
Prob

(
Htu = H1

∣∣H±j
t

)
− Prob

(
Htu = H

1
∣∣∣H±j

t

)] [
(1− δ)(cN (H1)− c1(H1))−∆

(
ηN cN (H1)− η1c1(H1)

)

︸ ︷︷ ︸

+
∑

v∈D(H1)
v 6=1

ηv∆
((
cN (H1+v)− c1(H1+v)

)
−
(
cN (H1)− c1(H1)

))



︸ ︷︷ ︸
3

U2(Hd, u) = Prob
(
Htu = Hd|H

±j
t

)(
k̃N (Hd)λ

N − k̃1(Hd)λ
1
)
∆
(
cN (H−N

d )− c1(H−N
d )

)

Notice that term 2 is o(term 1) for N → ∞, while applying previous arguments, terms 1 and 3 converge to a

random variable that doesn’t depend on the firm 1 and N’s subnetwork. On the other hand:

lim
N→∞

∑

Hd

U2(Hd, u) = ǫ4u,j(1, N) ∼ N(µ4
u,j , σ

4
u,j) (OA.C64)

where ǫ4u,j(1, N) in nonnegative P − a.s. if kN ≤ k1. Summarizing:

lim
N→∞

RN −R1 = lim
N→∞

RN
ND −R1

ND +
∑

j=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t)

(
∑

H1

U1(H1, u) +
∑

Hd

U2(Hd, u)

)

= lim
N→∞

RN
ND −R1

ND =

N∑

v=j
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−δ(tu−t), ǫ4u,j(1, N) (OA.C65)

after taking into account that, due to Assumption 4, λ̃1 ≈ λ̃N ≈ 0 forN large, while
(∑

H1 U1(H1, u) +
∑

Hd
U2(Hd, u)

)

converge to a random variable that is bounded P−a.s.

Substituting (OA.C60), then (OA.C62), then (OA.C65) into expression (OA.C7) for the risk premium, we

realize that the risk premium of firm i, can be expressed as a linear combination of the risk premium of firm j

and of an additional random variable ε(i, j)

lim
N→∞

[
µi
t −

N∑

v=1

λ̃v

]
P i(Ht)

xi
t(Ht)

= lim
N→∞

[
µj
t −

N∑

v=1

λ̃v

]
P j(Ht)

xj
t (Ht)

+ ε(i, j) (OA.C66)
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Table I – For the ‘Star’ network of Proposition OA.C 1, the table reports the critical k∗ for different
parameter combinations. It also reports the percentage of states for which condition ptut (H1) < ptut (H1) is
violated when ki < k∗, where ki is 1.05 for i = 1, k∗ for i = 6, and is linearly increasing in i. tu − t = 1 year.

(λ, η) k∗ % of violations

k1 k2 k3 k4 k5

(0.40 , 0.50) 22.02 61.72 22.05 6.58 1.29 0.28
(0.43 , 0.50) 19.96 57.77 19.55 5.41 1.29 0.28
(0.47 , 0.50) 18.23 54.30 17.17 5.03 1.08 0.27
(0.50 , 0.50) 16.74 49.52 14.98 4.48 1.08 0.27
(0.50 , 0.40) 15.72 45.34 14.17 4.48 1.14 0.27
(0.50 , 0.43) 16.15 47.42 14.42 4.48 1.02 0.27
(0.50 , 0.47) 16.61 49.41 15.39 4.47 1.08 0.27
(0.50 , 0.50) 17.13 50.75 15.41 4.48 1.08 0.27

ε(i, j) depends on firm i’s and j’s type: on the specific firms if they are central, on their subnetwork if they

are not central. Since any two ε(i1, j1) and ε(i2, j2) are imperfectly correlated, there are N central firms and

N subnetworks, any risk premium can be expressed as a linear combination of 2N other risk premia, and a

2N + 1-factor representation holds.
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Online Appendix D: Additional Tables

Table II – Average monthly returns of portfolio sorted according to market beta and size.

Average monthly returns, July 1963-June 2007: market beta-size deciles

β avg ME − 1 ME − 2 ME − 3 ME − 4
ME avg 0.03114 0.02247 0.01776 0.01401
β − 1 0.01436 0.03331 0.02256 0.01543 0.01300
β − 2 0.01334 0.03352 0.01842 0.01480 0.01214
β − 3 0.01257 0.02857 0.01600 0.01608 0.01408
β − 4 0.01391 0.02626 0.02870 0.01894 0.01492
β − 5 0.01419 0.02959 0.02133 0.01792 0.01221
β − 6 0.01515 0.04108 0.02340 0.01917 0.01877
β − 7 0.01398 0.03423 0.02160 0.01717 0.01580
β − 8 0.01363 0.02404 0.02410 0.02657 0.01327
β − 9 0.01323 0.03041 0.02483 0.01593 0.01135
β − 10 0.01236 0.03038 0.02381 0.01560 0.01454

ME − 5 ME − 6 ME − 7 ME − 8 ME − 9 ME − 10
ME avg 0.01117 0.01089 0.00921 0.00855 0.00714 0.00440
β − 1 0.01143 0.01129 0.01123 0.01126 0.00938 0.00468
β − 2 0.01031 0.01068 0.00956 0.00829 0.00885 0.00685
β − 3 0.00932 0.01245 0.00861 0.00784 0.00639 0.00642
β − 4 0.01322 0.00872 0.00918 0.00725 0.00795 0.00391
β − 5 0.01432 0.01506 0.00957 0.00932 0.00725 0.00529
β − 6 0.01071 0.01025 0.00914 0.00738 0.00824 0.00338
β − 7 0.01241 0.01073 0.00853 0.00821 0.00767 0.00343
β − 8 0.01017 0.00856 0.01007 0.00922 0.00584 0.00444
β − 9 0.01158 0.01258 0.01024 0.00793 0.00472 0.00275
β − 10 0.00822 0.00860 0.00599 0.00880 0.00511 0.00287
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Table III – Post-ranking betas of portfolios sorted according to market beta and book-equity/market-equity.

Post-ranking betas, July 1963-June 2007: market beta- size deciles

β avg B/M − 1 B/M − 2 B/M − 3 B/M − 4
B/M avg 1.13112 1.11346 1.08451 1.16000
β − 1 0.81325 1.00302 0.73155 0.78403 0.74576
β − 2 0.83423 0.81439 0.84641 0.78948 0.82510
β − 3 0.89889 0.92320 0.93405 0.83764 0.90155
β − 4 1.00131 0.96969 0.96846 1.09347 1.06513
β − 5 1.07845 1.21609 1.01639 1.07719 1.14484
β − 6 1.10929 1.20066 1.15471 1.07706 1.02531
β − 7 1.16892 1.12261 1.08995 1.25656 1.32119
β − 8 1.23686 1.20130 1.22913 1.03735 1.33045
β − 9 1.39660 1.30480 1.45803 1.32287 1.44631
β − 10 1.65830 1.55541 1.70595 1.56945 1.79437

B/M − 5 B/M − 6 B/M − 7 B/M − 8 B/M − 9 B/M − 10
B/M avg 1.16694 1.16423 1.14553 1.14887 1.09106 0.99038
β − 1 0.87035 0.85323 0.75812 0.84795 0.75506 0.78344
β − 2 0.83912 0.93062 0.73784 0.89570 0.83267 0.83100
β − 3 0.88902 0.98963 0.99362 0.88632 0.96475 0.66913
β − 4 0.99454 1.01981 1.03369 0.98158 1.00596 0.88083
β − 5 1.10714 1.12278 1.03598 1.09060 1.04324 0.93030
β − 6 1.09279 1.18042 1.15718 1.11595 1.09944 0.98937
β − 7 1.21830 1.18384 1.21744 1.12192 1.14475 1.01262
β − 8 1.39047 1.30383 1.31240 1.26455 1.17489 1.12419
β − 9 1.50720 1.42414 1.53859 1.38541 1.32540 1.25329
β − 10 1.76048 1.63396 1.67049 1.89873 1.56448 1.42965

38



Table IV
– Average monthly returns of portfolio sorted according to market beta and book-equity/market-equity.

Average monthly returns, July 1963-June 2007: market beta- b/m deciles

β avg B/M − 1 B/M − 2 B/M − 3 B/M − 4
B/M avg 0.00056 0.00303 0.00486 0.00612
β − 1 0.01177 0.00200 0.00116 0.00535 0.00372
β − 2 0.01044 0.00284 0.00590 0.00553 0.00430
β − 3 0.01065 -0.00021 0.00582 0.00595 0.00679
β − 4 0.01006 0.00094 0.00066 0.00060 0.00557
β − 5 0.01021 -0.00101 0.00465 0.00533 0.00688
β − 6 0.00848 0.00059 0.00190 0.00625 0.00513
β − 7 0.00942 -0.00117 0.00114 0.00348 0.00825
β − 8 0.00959 0.00059 0.00528 0.00371 0.00676
β − 9 0.01120 0.00157 0.00256 0.00577 0.00710
β − 10 0.01055 -0.00047 0.00124 0.00666 0.00669

B/M − 5 B/M − 6 B/M − 7 B/M − 8 B/M − 9 B/M − 10
B/M avg 0.00723 0.00815 0.01092 0.01274 0.01480 0.03396
β − 1 0.00723 0.00973 0.00885 0.01613 0.01396 0.04959
β − 2 0.00582 0.00694 0.01034 0.01421 0.01467 0.03384
β − 3 0.00610 0.00704 0.00783 0.01144 0.01706 0.03869
β − 4 0.00612 0.00946 0.01177 0.01390 0.01295 0.03866
β − 5 0.00660 0.01035 0.01280 0.00987 0.01213 0.03452
β − 6 0.00771 0.00521 0.01125 0.00724 0.01135 0.02813
β − 7 0.00683 0.00664 0.00913 0.01116 0.01610 0.03270
β − 8 0.00579 0.00743 0.01096 0.00959 0.01690 0.02888
β − 9 0.01077 0.01029 0.01347 0.01940 0.01384 0.02727
β − 10 0.00937 0.00844 0.01279 0.01447 0.01901 0.02731
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Table V – Parameter estimates. Model (36)-(37) is estimated on the earnings
of beta-size sorted portfolios, using the maximum likelihood procedure described in the Appendix. The
panel reports estimated parameters λ0, η and c for each portfolio, and their standard errors in parenthesis.

Parameter Estimates

ME − β 1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4
λ0 0.4732 0.6860 0.3545 0.9640 0.3158 0.7741 0.6917 0.7557

(0.0807) (0.1856) (0.1141) (0.2554) (0.0419) (0.1893) (0.1975) (0.2076)

η 0.9304 0.4327 0.1474 0.4909 0.8869 0.3863 0.3157 0.7873
(0.1522) (0.1159) (0.0433) (0.1369) (0.1107) (0.0931) (0.0873) (0.2022)

c 7.0176 10.0707 5.1481 5.2788 2.0002 2.2135 2.5144 5.7365
(1.7015) (2.6212) (1.5894) (1.5202) (0.5415) (0.6425) (0.6932) (1.5461)

ME − β 3-1 3-2 3-3 3-4 4-1 4-2 4-3 4-4
λ0 0.5654 0.2790 0.2756 0.4094 0.2476 0.2587 0.2743 0.4069

(0.0726) (0.0537) (0.0654) (0.0713) (0.0366) (0.0435) (0.0549) (0.0874)

η 0.7698 0.0371 0.0631 0.7273 0.7595 0.3604 0.1098 0.6325
(0.0956) (0.0069) (0.0136) (0.1302) (0.1091) (0.0621) (0.0212) (0.1221)

c 10.3987 7.1317 3.0810 3.0196 8.4203 1.9123 7.5036 1.4001
1.7390 (1.4823) (0.7178) (0.6556) (1.6114) (0.4024) (1.4361) (0.2882)
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