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Over the past couple of years, investors have faced larger than usual uncertainty

about government policies. For example, the uncertainty surrounding the expiration of

the Bush tax cuts, the fiscal cliff and the government shutdown in 2013 are often cited

as having had a negative impact on real quantities and asset prices. While the recent

literature has studied the effect of fiscal uncertainty on macroeconomic quantities or the

aggregate stock market, we show in this paper both theoretically and empirically that

fiscal uncertainty is an important determinant of the cross-section of equity returns.

Motivated by work that links government uncertainty to asset prices (see, e.g., Pástor

and Veronesi (2012, 2013)), we explore how agents’ disagreement about the impact of

a fiscal policy on fundamentals affects firms’ stock returns. To this end, we propose

a parsimonious general equilibrium model where heterogeneous agents disagree on the

extent to which public spending affects the aggregate output growth rate. In particular,

we assume that the government implements a countercyclical fiscal rule that reacts to

negative (positive) past output shocks by expanding (contracting) its spending target,

which impacts expected output growth. In order to implement its fiscal rule, the gov-

ernment diverts a fraction of aggregate output from the private sector. Agents have

different beliefs about the scope for public stimulus: agent a (b) believes that the gov-

ernment sets a larger (smaller) long-term goal for the output growth rate induced by

public intervention. Since agents “agree to disagree” and never converge to a consensus

fiscal rule, their beliefs about the future evolution of output and public spending diverge

systematically. The likelihood ratio of these beliefs is a proxy for the uncertainty about

the fiscal rule and fluctuations in fiscal uncertainty are priced in equilibrium.

To generate a cross-section of firms, we adopt the EBIT-based modeling framework

of Leland (1994), Goldstein, Ju, and Leland (2001), Bhamra, Kuehn, and Strebulaev

(2010), and Chen (2010), among others, where firms have a static capital structure

consisting of equity and a console bond. After modelling firms’ exogenous random

default event to replicate the properties of an endogenous default, we obtain equity and

bond prices, and risk premia in closed form, modulo a simple inverse Fourier transform.

Using a set of calibrated parameters, we inspect whether the predictions of our model are
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qualitatively consistent with our empirical findings about the price of fiscal uncertainty

risk in the cross-section of stock returns.

We then test the theoretical predictions in the data. To this end, we first construct

a novel measure of fiscal disagreement from a large cross-section of forecasts about next

year’s Federal budget deficit and US GDP growth. Using a Kalman filtering approach,

we then estimate for each individual forecaster her perceived fiscal action. Each month,

we then define fiscal disagreement as the difference between those forecasters who believe

that the government’s fiscal policy is effective and ineffective. To measure each firm’s

sensitivity with respect to the fiscal uncertainty proxy, we run rolling regressions from

stock returns onto changes in our fiscal uncertainty proxy. Using data from 1994 to 2013,

we show that loadings on changes in fiscal uncertainty vary a lot in the cross-section and

negatively predict future stock returns. For example, when we sort stocks into different

quintiles based on their fiscal uncertainty exposure, we find that low exposure stocks offer

significantly higher returns than high exposure stocks. More concretely, the portfolio

with the lowest exposure has an annual return of 13.49% whereas the highest exposure

portfolio has a return of 6.99%. The spread is −6.5% per year and statistically highly

significant. Interestingly, we find almost no relationship between fiscal exposure sorted

portfolios and the leverage or size of a firm. Both the average leverage and the average

firm size are almost constant across the different portfolios, implying that there is an

almost flat relationship between exposure to fiscal uncertainty and leverage/firm size.

We also re-confirm these findings using standard Fama and MacBeth (1973) regressions.

Our paper proceeds as follows. Section 1 sets up a general equilibrium featuring fiscal

uncertainty and Section 2 presents the empirical analysis. Section 3 concludes. Proofs

are deferred to the Appendix.

Literature Review: Our paper is most closely related to the literature studying

the link between government policy and asset prices (see Pástor and Veronesi (2012,

2013)). In their model, expected firm profitability is affected by the prevailing govern-

ment policy and this effect is unknown. Both the government and investors learn about

the current policy’s impact in a Bayesian fashion. Two types of uncertainty affect stock

returns: Impact and political uncertainty. The former origins from agents’ learning
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process and is represented by the standard deviation of agents’ prior beliefs about the

policy impact. The latter is associated with a political cost that is incurred whenever

the government changes its policy. Different from their contribution, in our model fis-

cal policy uncertainty is generated by agents’ disagreement about the precise impact

of a fiscal rule. Since we are interested in the implications of this uncertainty for the

cross-section of returns, we explore how exposure to systematic risk and to the impact of

public spending generates heterogeneous exposure to fiscal uncertainty. Moreover, fiscal

uncertainty exposure is tightly linked to a firm’s fundamentals like leverage, its exposure

to government spending, and the cyclicality of its earnings.

This is not the first paper that studies the effect of fiscal uncertainty on stock returns.

For example, Croce, Kung, Nguyen, and Schmid (2012) examine the effects of fiscal poli-

cies in a production-based general equilibrium model in which taxation affects corporate

decisions. When agents feature recursive preferences, the authors show that tax uncer-

tainty contributes significantly to the market equity premium. Sialm (2006) finds that

both term and equity premia are higher because they compensate investors’ for the risk

that taxes change over time. Gomes, Michaelides, and Polkovnichenko (2012) study an

incomplete market model with heterogeneous agents where government debt and equity

are imperfect substitutes. Changes in tax rates and government debt affect asset prices.

For example, an increase in public debt is shown to lead to both a higher risk-free rate

and a lower equity premium. Different from these papers, we study a different type of

fiscal uncertainty which stems from agents’ disagreement. Moreover, we study the effect

on the cross-section of equity returns rather than the market itself.

The effect of government spending and more generally political cycles on asset prices

is studied in Belo, Gala, and Li (2013) who construct a novel measure of industry ex-

posure to government spending. It is defined as the proportion of each industry’s total

output that is purchased directly by the government sector, as well as indirectly through

the chain of economic links across industries. The authors find that stock returns are pre-

dictable over political cycles and that during Democratic (Republican) presidencies firms

with higher exposure to government spending experience higher (lower) stock returns.

Da, Warachka, and Yun (2014) study how fiscal policies affect consumption volatility
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on the US state level and document that volatility is lower in states that implement

counter-cyclical fiscal policies and that stock returns of firms which are headquartered

in these states have lower stock returns. The role of government spending uncertainty

on private investments has been explored in for example Julio and Yook (2012) who

find that firms’ investments drop during election periods. Our paper also contributes to

the literature that studies the effect of government spending on firm’s capital structure.

For example, Graham, Leary, and Roberts (forthcoming) find that government debt is

strongly negatively correlated with corporate debt and investment, suggesting a crowd-

ing out effect from public spending. Large and less risky firms are more affected as their

corporate debt is a closer substitute to Treasuries.

A large macroeconomic literature studies the relationship between fiscal uncertainty

and the real economy. Fernandez-Villaverde, Guerron-Quintana, Kuester, and Rubio-

Ramirez (2013) study the effect of temporary increases in fiscal policy uncertainty on real

quantities within a New Keynesian model. To this end, the authors estimate different

fiscal rules and interpret the changes in the volatility of the innovations in the fiscal rules

as fiscal policy uncertainty.

Finally, our paper is also related to the literature that studies the asset pricing

implications of learning and heterogeneous agents. For example, Basak (2000, 2005)

and Buraschi and Jiltsov (2006) study how equilibrium consumption sharing between

optimistic and pessimistic agents affects equity and option prices. Dumas, Kurshev,

and Uppal (2009) also allow for learning and focus on the implications for equity and

optimal portfolio allocations while Buraschi, Trojani, and Vedolin (2013) study how

disagreement affects credit spreads in the cross-section.

1 The Model

In this Section, we describe a general equilibrium model endowed with a public (the gov-

ernment) and private sector where the latter is populated by disagreeing investors. The

model draws upon two strands of the literature (i) the political uncertainty literature

(see e.g., Pástor and Veronesi (2012)) and (ii) the literature studying how investors’ dis-

agreement affects asset prices (see e.g., Scheinkman and Xiong (2003)). In the spirit of
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the latter, we assume that agents do not observe the precise impact of the government’s

fiscal action on growth rates of fundamentals. They also disagree on the characteristics

of this action, namely its long-term goal and cyclicality. We next discuss the economic

environment, derive equilibrium quantities and characterize the impact of agents’ dis-

agreement on asset prices.

1.1 Fundamentals

We consider a continuous-time endowment economy defined on an infinite time-horizon,

and populated by two groups of agents: the “public sector”, or Government, and the

“private sector”. The public expense for consumption and investment (Gt) is modeled

exogenously as a time-varying fraction g̃t of aggregate output Ct: Gt = g̃tCt. The

purpose of public expenditure is to control the expected output growth rate by means

of an action At. In other words, the aggregate endowment evolves as follows:

dCt
Ct

= (µc + At) dt+ σcdZt, (1)

where µc and σc are constant parameters. By definition the government action impacts

public expense. For analytical convenience, we model the dynamics of gt = 1 − g̃t, the

percentage of output accruing to the private sector net of public expense:

dgt
gt

= −αAtdt+ σgdBt. (2)

Intuitively, larger actions reduce the expected private share: if a fiscal expansionary

multiplier effect is present, the impact of the action on output is larger than its impact on

the budget, hence α should be positive and smaller than one.1 However, macroeconomic

studies disagree on the extent of fiscal multipliers, often arguing about a contractionary

effect due to crowding-out, in which case α > 1. We refer to At as a “fiscal policy rule”

1While the process gt is not bounded above by one – contrary to the consumption shares processes
in Menzly, Santos, and Veronesi (2004), for instance – they allow analytical tractability. We check that
the parameter set used in the empirical section implies a very small probability that the process exceeds
one.
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and we assume that it is designed to reach a long-term target A – at an exponential rate

λ – and to partially offset past shocks to output growth:

At = A
(
1− e−λt

)
+ ρ

∫ t

0

e−λ(t−s)σA

(
dCs
Cs
− (µc + As)ds

)
ds

+
√

1− ρ2
∫ t

0

e−λ(t−s)σAdWs. (3)

Note that the second component of At in expression (3) is an exponentially weighted

average of past unexpected output growth, scaled by a constant σA, and pre-multiplied

by a correlation parameter ρ. ρ captures the correlation between aggregate output and

the fiscal action. The intuition is that current public expense can have an effect on

output growth, however, this effect is not immediate but takes time to materialize. The

residual component is driven by an independent innovation dWt. Taking differentials in

(3) leads to the following dynamics:

dAt = λ(A− At)dt+ σA

(
ρ dZt +

√
1− ρ2 dWt

)
. (4)

The private sector is uncertain about the fiscal action because At is unobservable, as well

as the Brownian motions Zt and Bt. There are two types of representative private agents,

a and b, holding different beliefs about the data generating processes, possibly due to

contrasting views about the effectiveness of public economic intervention. For example,

the economic crisis of 2008 ignited a heated discussion about US fiscal policy with the

Federal Funds rate close to zero. While some economists emphasized an increase in

government spending (see, e.g., Krugman (2009)), others argued that the best response

would be to reduce both taxes and spending (see, e.g., Cato Institute (2009)).

As in Scheinkman and Xiong (2003) or Dumas, Kurshev, and Uppal (2009), this

heterogeneity originates in subjective views about the model: in particular group a,

supporting intervention, believes that the effect of public spending is countercyclical, in

that the government aims at a balanced target that partially hedges past output shocks.

Moreover, it assumes a large long-term growth goal. Group b instead, supporting a

laissez faire policy, does not believe that the action offsets past output shocks and

undermines fiscally induced long-term growth. Denoting agents’ subjective parameters
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by a subscript, we can summarize these views as follows: Aa > Ab, ρa < 0, ρb = 0. It is

reasonable to assume that both cyclicality and long-term impact of the fiscal action are

subject to disagreement. While net public spending propensity is observable,2 its effect

on growth is an estimate subject to measurement error and influenced by prior beliefs

about the political cycles.3 Both types of agents infer in a Bayesian fashion the policy

rule At from the available information set, which comprises output growth and private

output share growth. Since they “agree to disagree” about the evolution of the rule,

their posterior estimates Âit = Ei[At|F c,gt ], i = a, b will diverge in general:

dÂit = λ(Ai − Âit)dt+
ηit + σcσAρi

σc
dẐi

t − ηit
α

σg
dB̂i

t

dηit
dt

= −2

(
λ+

σA
σc
ρi

)
ηit + σ2

A(1− ρ2i )− η2t
(

1

σ2
c

+
α2

σ2
g

)
i = a, b. (5)

These dynamics follow from Theorem 12.7 in Liptser and Shiryaev (2000). The processes

dẐi
t =

1

σc

[
dCt
Ct
− (µc + Âit)dt

]
, (6)

dB̂i
t =

1

σg

[
dgt
gt

+ αÂitdt

]
, (7)

are standard Brownian motions under the subjective belief of agent i, and Ei[ ] denotes

expectation with respect to this probability measure. The distinct posterior variances

ηit = Ei[(At − Âit)2|F
c,g
t ] can be shown to converge asymptotically to the limit:

ηi =

√(
λ+ σA

σc
ρi

)2
+ σ2

A(1− ρ2i )
(

1
σ2
c

+ α2

σ2
g

)
−
(
λ+ σA

σc
ρi

)
(

1
σ2
c

+ α2

σ2
g

) . (8)

2For example, Frankel, Vegh, and Vuletin (2013) estimate a negative unconditional correlation of
-40% between US GDP growth and public spending between 1960 and 2009.

3For instance, Belo, Gala, and Li (2013) find differential effects of government spending on firms
during Democratic and Republican presidencies.
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Following the incomplete information literature, we set ηit = ηi, assuming convergence

has taken place. The subjective dynamics about the growth rates of output and private

share are as follows:

dCt
Ct

= (µc + Âit)dt+ σc dẐ
i
t ,

dgt
gt

= −αÂit dt+ σg dB̂
i
t, (9)

which implies the following restrictions about the innovations:

dẐb
t = dẐa

t +
Âat − Âbt

σc
dt, dB̂b

t = dB̂a
t −

α(Âat − Âbt)
σg

dt. (10)

We refer to φt = Âat−Âbt as the disagreement between the inferences of the two types. The

disagreement process is our proxy for fiscal uncertainty. Expression (10) together with

Girsanov’s theorem suggest that the difference in belief can be conveniently summarized

by the likelihood ratio process θt = dPb
dPa

∣∣∣
t
, with the following dynamics:

dθt
θt

= −φt
(

1

σc
dẐa

t −
α

σg
dB̂a

t

)
, (11)

so that expectations about agent b’s subjective belief can be expressed in terms of group

a’s: Eb[X] = Ea[θtX]. By Itô’s lemma, the disagreement process φt evolves according

to the following mean-reverting dynamics:

dφt = ω(φ− φt)dt− (ηa − ηb)
α

σg
dB̂a

t + (ηa + σAσcρa − ηb)
1

σc
dẐa

t . (12)

where

ω = λ+ ηb

(
α2

σ2
g

+
1

σ2
c

)
and φ =

λ(Aa − Ab)
ω

.

1.2 Characterization of Equilibrium

We assume that both agents have CRRA additive utility of inter-temporal consumption,

with homogeneous parameter of relative risk aversion γ and subjective discount rate δ.

Markets are complete, because we assume that agents can continuously trade at least

one financial asset in addition to a locally risk-less bond in zero net supply – with interest
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rate rt – and the stock market, a claim to aggregate output. There is a unique state-

price density, denoted by ξat (ξbt ) when represented relative to the subjective probability

measure of agent a (b). ξat reads explicitly:4

ξat = exp

(
−
∫ t

0

(
rs +

(κa,Zs )2 + (κa,Bs )2

2

)
ds−

∫ t

0

(
κa,Zs dẐa

s + κa,Bs dB̂a
s

))
, (13)

where κa,Zt and κa,Bt are the market prices of risk as perceived by agent a. The following

Proposition explicits the state-price density and its components:

Proposition 1. Relative to agent a’s belief, the state-price density reads explicitly:

ξat = e−δt (gtCt)
−γ
(

1 + θ
1
γ

t

)γ
, (14)

while the equilibrium interest rate and market prices of risk are:

rt = δ + (µ+ (1− α)Âbt)γ −
1

2
γ(γ + 1)(σ2

c + σ2
g) (15)

+
1

2

γ − 1

γ
wa(θt)w

b(θt)φ
2

(
1

σ2
c

+
α2

σ2
g

)
, (16)

κa,Zt = γσC +
φ

σc
wb(θt); κb,Zt = γσC −

φ

σc
wa(θt) (17)

κa,Bt = γσg −
φα

σg
wb(θt); κb,Bt = γσg +

φα

σg
wa(θt), (18)

where wa(θt) and wb(θt) = 1− wa(θt) are the equilibrium shares of private consumption
of group a and b, respectively:

wa(θt) =
cat
gtCt

=
1

1 + θ
1
γ

t

.

.

1.3 The price of the market portfolio

Without loss of generality, we consider group a’s belief as the reference one. Relative to

the latter, the return of the market portfolio – claim to aggregate output – admits the

following Ito representation:

dSt
St

= µt dt+ σZ,t dẐ
a
t + σB,t dB̂

a
t . (19)

4It is easy to see that ξbt = ξat /θt. See the proof of Proposition 1 in the Appendix.
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The expected return and volatility coefficients are determined endogenously and re-

ported, along with the equilibrium price, in the following Proposition.

Proposition 2. Given the equilibrium state-price density ξat reported in (14), the equi-
librium price of the claim to aggregate consumption is:

SCt =
Ct(

1 + θ
1
γ

t

)γ ∫ ∞
t

em0(t,s)+L(t,s)+H(t,s)Âat

[
γ∑
j=0

(
γ
j

)
θ

1
2
+ 2j−γ

2γ

t ×

×
(∫ ∞
−∞

e2πiz log θt T̃ (j, z, t, s, φt)dz

)]
ds (20)

T̃ (j, z, t, s, φt) = T (z) exp
(
F0(t, s, j, z) + F1(t, s, j, z)φt + F2(t, s, j, z)φ2

t

)
(21)

where γ denotes the smallest integer larger or equal to γ, and expressions for functions
m, L, H, and Fj, j = 0, 1, 2 are reported in the Appendix. If S(Ct, Â

a
t , φt, θt) denotes

the RHS of (20), the stock return volatility components are:

σZ,t =
∂ logS
∂Ct

Ctσc +
∂ logS
∂Âat

ηa + σAσcρa
σc

− ∂ logS
∂φt

(ηa + σAσcρa − ηb)
1

σc
− ∂ logS

∂θt
θt
φt
σc

σB,t = −∂ logS
∂Âat

αηa
σg

+
∂ logS
∂θt

θt
αφt
σg
− ∂ logS

∂φt

α(ηa − ηb)
σg

. (22)

The derivatives appearing in the expressions are detailed in the Appendix. The equilib-
rium risk premium of the market portfolio is then

µt − rt = σZ,t κ
a,Z
t + σB,t κ

a,B
t , (23)

where the equilibrium market prices of risk κa,Zt and κa,Bt are as in (17)-(18).

The stock price representation (20) is explicit modulo an inverse Fourier transform,

which can easily be evaluated using Fast Fourier Transform algorithms.5 We refer to the

Appendix for further details.

1.4 The cross-section of equity returns and credit spreads

We now populate our economy with a cross-section of N firms. To model their behav-

ior, we adopt the EBIT-based approach introduced in Leland (1994) and extended in

Goldstein, Ju, and Leland (2001), Bhamra, Kuehn, and Strebulaev (2010), and Chen

(2010), among others. We assume that firms possess a static capital structure consisting

5This Fourier Transform representation is novel and distinct from others appearing in the heteroge-
neous beliefs literature, such as in Dumas, Kurshev, and Uppal (2009).
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of equity and a console bond, serviced by a perpetual and constant coupon payment

stream qi, where i denotes a generic firm. Firms’ EBIT evolution, under the observation

filtration and reference belief, is described by the following diffusion process:6

dEi
t

Ei
t

=
(
µi + βiÂ

a
t

)
dt+ σi

(
ρi dẐ

a
t +

√
1− ρ2i dW i

t

)
. (24)

According to expression (24), expected earnings growth is affected by the fiscal action,

where the sensitivity is governed by the firm-specific parameter βi. We think of βi similar

in spirit to the industry exposure to government spending variable in Belo, Gala, and

Li (2013) who measure the effect of government spending on expected firm cash flows

from national input and output accounts.

The systematic risk component of earnings is controlled by a correlation parame-

ter ρi, while the idiosyncratic shock W i
t is observable. We also assume that agents

do not learn the fiscal rule from the cross-section of earning growths. While focusing

on macroeconomic signals alone to infer fundamentals could be attributed to some ra-

tional inattention, we emphasize that this assumption can be relaxed without altering

qualitative results, but at the expense of parsimony.

Firms’ profits are taxed at rate τ , thus the purpose of issuing debt is to shield

cash-flows from taxation. Debt is issued at par,7 and the proceeds are distributed

to shareholders. If k̃ denotes the firms’ pay-out ratio, dividends distributed to share-

holders are then a fraction k = k̃(1− τ) of net earnings: Di
t = k(Ei

t−qi). Equity holders

cannot increase the firm’s indebtedness, and can reduce it only by defaulting on coupon

payment, whereby control is assumed by debt holders. These can either liquidate assets

and recover a fraction 1 − ϕl of the abandonment value – the unleveraged firm value

upon default – or opt for renegotiation, which yields a fractional recovery of 1 − ϕr.

Assuming ϕr < ϕl, the incentive for renegotiation leads to a Nash bargaining game,

where shareholders capture a portion p of the renegotiation surplus ϕl − ϕr, where

p denotes their bargaining power. We assume that shareholders optimally select the

6Since, as customary in the literature, we model exogenously firms’ EBIT and aggregate output, the
difference between the latter and cumulative EBIT is the remuneration of labor and other production
factors: see e.g., Bhamra, Kuehn, and Strebulaev (2010).

7That is, at its equilibrium market value implied by the coupon stream qi.
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coupon rate qi to maximize total firm value, although we do not solve explicitly for this

optimal level. The traditional trade-off between the tax-benefits of debt and bankruptcy

costs is apparent. The unleveraged firm value, denoted by V it , is the no-arbitrage value

of the earnings stream after taxes:

V it = Ea
[∫ ∞

t

ξas
ξat
Ei
s(1− τ)ds

∣∣∣∣F c,gt ] . (25)

where ξat – expression (14) – is the equilibrium state-price density relative to the reference

belief (group a’s). In the Appendix, we provide an explicit representation for V it .

It is in the interest of equity holders to choose a default policy that maximizes the

equity value. The latter, denoted by Vt, comprises the no-arbitrage valuation of the

dividend stream until default and of the recovery value upon default. Formally, Vt is the

value function of the following optimal stopping problem:

Vt = suptd E
a

[∫ td

t

ξas
ξat
Di
sds+

ξatd
ξat

(
p(ϕl − ϕr)V itd

)∣∣∣∣F c,gt ] . (26)

The ideal default time, solution to (26), is typically identified in terms of a critical

boundary, such that default is triggered the first time earnings fall below it. In model

settings where earnings are the only state variable – such as Leland (1994) – this thresh-

old is constant. In settings where earnings growth and volatility depend on a Markov

chain modeling the business cycle – such as Bhamra, Kuehn, and Strebulaev (2010) and

Chen (2010) – the default boundary is a piece-wise constant function of the state. In our

setting, this characterization is problematic, since the default boundary is a continuous

function of the (posterior) fiscal action, the disagreement process, and the agents’ likeli-

hood ratio. The absence of closed-form solutions to (26) and the large number of state

variables motivate us to introduce a simulation-based numerical method, inspired by

the American-option pricing algorithm in Longstaff and Schwartz (2001). This method

has the advantage of mitigating the curse of dimensionality to which both iterative

(contraction mapping) and finite-elements numerical strategies are prone.8

8For example, Brandt, Goyal, Santa-Clara, and Stroud (2005) propose a solution method for optimal
investment problems based on a similar reasoning.
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The numerical method consists of approximating problem (26) with one where the

default option is available to shareholders only for a long but finite time-horizon [t, T ]

– t being the evaluation date – and at a finite number of dates.9 At time T , the firm

is perpetually bound to keep its current capital structure.10 If ∆td denotes the time

lapsed between defaultable dates, clearly the approximate equity value converges to its

true counterpart as the decision frequency (1/∆td) and horizon (T − t) increases. The

method iterates backwards through decision dates td(j), j = 1, . . . , nd,
11 to solve the

following dynamic programming equation:

V i
td(j)

= max
(
p(ϕl − ϕr)V itd(j)(E

i, Âa, φ, θ), Ctd(j)(E
i, Âa, φ, θ)

)
(27)

Ctd(j)(E
i, Âa, φ, θ) = Ea

[∫ td(j+1)

td(j)

ξas
ξatd(j)

Di
sds+

ξatd(j+1)

ξatd(j)
V i
td(j+1)

∣∣∣∣∣F c,gt
]

(28)

As in Longstaff and Schwartz (2001), the continuation value Ctd(j)(Ei, Âa, φ, θ) is ap-

proximated by regressing simulated realizations of the argument in the expectation on

an appropriate base of polynomials. The default boundary is defined as the smallest

level of earnings such that default is prevented:

E
i

td(j)
(Âa, φ, θ) =

{
inf
Ei

: p(ϕl − ϕr)V itd(j)(E
i, Âa, φ, θ) ≤ Ctd(j)(E

i, Âa, φ, θ)

}
. (29)

In the exercises to follow we consider the default boundary E
i

td(0)
(Âa, φ, θ), at the be-

ginning of the “defaultable” window, which is closest to the boundary implied by the

infinite-horizon problem (26). As customary, we obtain the conditional equity risk

premium
(
Eatd(0)[dV

i
td(0)

/V i
td(0)

]− rtd(0)
)

by combining information on the equity return

volatility and the market prices of risk. We defer more details to the Appendix. We are

also interested in the equilibrium credit spread of a given firm, that is, the difference

between the yield of defaultable and default-free debt.

9This is akin to approximating an American option security with a Bermudan option.
10The Appendix provides an explicit expression for the default-free leveraged equity value.
11nd denotes the total number of decision dates. The algorithm is initiated at time T
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Taking into account its console nature, the yield is the rate that would price the

bond correctly as a perpetuity. Thus firm’s i credit spread reads:

csit =
qi
Bi
t

− qi
Bit

(30)

Bi
t = Ea

[∫ t∗d

t

ξas
ξat
qids+

ξat∗d
ξat

(1− ϕr − p(ϕl − ϕr))V it∗d

∣∣∣∣F c,gt ] , (31)

Bit = Ea
[∫ ∞

t

ξas
ξat
qids

∣∣∣∣F c,gt ] . (32)

In the expression for the no-arbitrage price of defaultable debt, Bi
t, the optimal default

time is t∗d = {infs : Ei
s < E

i

s(Â
a, φ, θ)}, and the recovery value upon default is the

renegotiation value net of equity holders’ share of the renegotiation surplus. We obtain

(31) numerically exploiting the previous identification of the default boundary. The

price of the default-free debt, Bit, has the usual inverse Fourier transform representation

that we have been using for non-defaultable claims, which is given in (A-45) Appendix.

2 Empirical analysis

In this section, we document how exposure to fiscal uncertainty affects stock returns

in the cross section. To this end, we first construct a proxy of fiscal uncertainty using

survey data on future government spending. We then sort stocks according to their

exposure to this proxy and sort them into different binds. We find that firms with low

(high) exposure display high (low) returns which implies a negative price of risk. We

then use standard Fama and MacBeth (1973) regressions to assess the market price of

fiscal uncertainty and find it to be significantly negative and large.

2.1 Data

Stock Data. Our data sample includes all common stocks (share code of 10 or 11)

listed on the NYSE, AMEX, or Nasdaq which are available from CRSP. Firm-specific

characteristics are retrieved from Compustat.
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2.2 Proxy of Fiscal Uncertainty

To construct our proxy of fiscal uncertainty, we merge survey data from Consensus

Economics (CE) with the following quarterly macroeconomic series obtained from St.

Louis Fed’s FRED database and the BEA: US Government total expenditure, GDP

level and growth. CE surveys are conducted monthly and consist of forecasts – made by

financial institutions and firms – about different macroeconomic indicators both for the

current and next year. We use forecasts for next year’s Federal budget deficit and US

GDP growth. For these items, data is available since January 1994 and a cross-section

of around 25 forecasts is available each month.12 We select the institutions/forecasters

for whom at least 48 months of continuous responses are available.13 This leaves us with

N = 36 individuals. Our aim is now to obtain an estimate of the latent fiscal action

Ât as perceived by each of these forecasters. To this end, we use a two-stage procedure

based on Kalman filtering and Maximum-Likelihood estimation. In the first stage, we

consider forecasts for next year’s Federal budget deficit and GDP growth. In particular,

we postulate that bt, ratio between Federal budget deficit and GDP, evolves as follows

relative to the econometrician information set:

dbt = αbÂ
i
tdt+ σbdWt, (33)

For any date t for which next calendar year starts at date T , the Appendix shows that

the model-equivalents of the survey forecasts read:

ĜDPt,T = Di
0(T − t) +Di

1(T − t)Âit, (34)(
D̂EF

GDP

)
t,T

= αb
(
Di

0(T − t)− µ
)

+ αbD
i
1(T − t)Âit. (35)

where coefficients Di
0(T − t) and Di

1(T − t) are reported in the Appendix. We add

Gaussian white noise measurement error to equations (A-48) and (A-51) and use them

in a state-space model as measurement equations for the latent state Âit. We obtain

forecaster-specific first stage parameter estimates by maximum likelihood, from the pre-

12Consensus Economics surveys are available since 1990, but until 1994 replies are erratic at best.
13We provide a more detailed description of the survey data and how we treat missing values in the

Appendix.
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diction errors of the Kalman filter estimates of Âit. We emphasize that this procedure

is not able to identify the correlation parameter ρi. To this purpose, the second stage

estimation employs data on realized GDP growth and growth of Government expen-

diture as a fraction of GDP. We consider a state-space model where the measurement

equations are a discretized version of the system (1)-(2), where we constraint common

parameters to coincide with first stage’s estimates, and estimate the remaining ones,

most importantly ρi, by maximum likelihood from Kalman filter prediction errors.

This procedure leaves us with i) a cross-section of forecaster-specific parameter es-

timates (Âi, ρ̂i) and ii) N forecaster-specific time series of filter estimates for the fiscal

action At, obtained from the first stage. Our strategy to classify the individuals into

group a and group b is as follows: For each month t, we double sort the forecasters who

responded to the survey with respect to parameter estimates Âi and ρ̂i. In accordance

with the model’s assumptions, members of the high-Ai/low-ρi quantile are posited to

belong to group a, while those in the low-Ai/high-ρi quantile belong to group b. We

emphasize that the estimates of the correlation parameter ρi are negative for almost

all individuals, thus high-ρi values are indeed not statistically different from zero, as

the model implies for group b. Finally, our proxy for fiscal uncertainty, the empirical

counterpart of the disagreement process φt, is:

φ̂t =
1

Na
t

∑
i∈At

Âit −
1

N b
t

∑
i∈Bt

Âit, (36)

In other words φ̂t is the difference of the equally-weighted averages of the fiscal action

estimates in each group, where At and Bt are the two different bins in month t and N j
t ,

j = a, b is the number of forecasters in each group.

[Insert Figure 1 here.]

Figure 1 plots fiscal disagreement together with two other commonly used proxies of

uncertainty: the Baker, Bloom, and Davies (2013) economic policy index (upper panel)

and the VIX (lower panel). We note two spikes, one in 2001 and another (larger one)

before 2010. The former can be linked to the implementation of the Economic Growth

and Tax Relief Reconciliation Act and the latter to the expiration thereof.
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2.3 Portfolios sorted on fiscal uncertainty

To study the relationship between expected stock returns and fiscal uncertainty, we

estimate beta loadings for each stock from using two-factor model with the market

excess return, rxmt and changes in fiscal uncertainty, ∆φ̂t. At the end of each month, we

run rolling regressions of the following form:

rxi,t = αi,t + βMi,t rx
m
t + βfi,t∆φ̂t + εi,t,

where rxi,t is the one-month excess return of stock i. The window size is chosen to be

36 months and we require each stock to have each last 24 non-missing returns out of the

36 months.

We then sort stocks into quintiles based on their loading, β̂f , and calculate portfolio

returns for the subsequent period. Table 1 presents the results. Portfolio 1 contains

the stocks with the lowest exposure to fiscal uncertainty (i.e., the stocks with negative

betas), while portfolio 5 contains the stocks with the highest exposure (positive betas).

We first note that high (low) exposure firms have lower (higher) returns. Low βf firms

have an average annualized return of 13.49% and high βf stocks have a return of 6.99%.

The returns are monotonically decreasing between portfolio 1 and portfolio 5. The

spread between the high and low exposure firms, denoted by HMLf is -6.5% and highly

statistically significant (t-statistic of 3.01).

[Insert Tables 1 and 2 here.]

For each portfolio, we report in Table 2 alphas for different specifications. In par-

ticular, we report alphas for a one-factor CAPM (column 2), Fama and French (1993)

three-factor model (column 3), and Carhart (1997) four-factor model (column 4). The

last four columns report the factor loadings. The difference in average returns is mirrored

in large differences in alphas. For example, the low exposure stocks, have a one-factor

alpha which is 0.52% whereas the one-factor alpha for high exposure stocks is 0% per

month. Including the size and book-to-market factors, the alpha for the low (high) ex-

posure stocks is -0.30% (-0.18%). The bottom line presents the same quantities for the
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HMLf portfolio which is long high exposure stocks and short low exposure stocks. We

note that the alpha is statistically significant even when we control for the three Fama

and French (1993) factors. To explore in more detail the time series behavior of the

HMLf factor, we plot in Figure 2 (upper panel) the returns of the HMLf portfolio and

in the lower panel we plot the cumulative returns of the low (pf1) and high (pf5) fiscal

disagreement exposure stocks.

[Insert Table 3 and Figure 2 here.]

We first note that the difference between the low exposure (pf1) and high exposure

(pf5) stocks is almost zero until the early year 2000. In 2001 the Economic Growth and

Tax Relief Reconciliation Act (commonly referred to as one of the two Bush tax cuts)

was passed. In general the act lowered tax rates and although these cuts were set to

expire at the end of 2010. A second large divergence is observed around 2010 when the

high exposure portfolio steeply increases vis-à-vis the low exposure portfolio. During

this period, there was large uncertainty about whether the Bush-era tax cuts should be

extended or not. In Table 3, we provide summary statistics of the HMLf strategy. We

note that the fiscal trading strategy performs much better than other well-know strategy

such as the market, size or book-to-market portfolio. Moreover, since the volatility is

also comparably smaller, this results in an annual Sharpe ratio which is more than twice

as large as for the market (0.73 versus 0.33). The low unconditional correlations be-

tween the different strategies imply that compensation for fiscal uncertainty is basically

uncorrelated with other strategies.

2.4 The market price of fiscal uncertainty

The portfolio sorts indicated a significant negative relation between exposure to fiscal

uncertainty and future returns. In the following, we run Fama and MacBeth (1973) re-

gressions to explore in more detail the cross-sectional relationship between stock returns

and our proxy of fiscal uncertainty.

As test assets we use the five portfolios formed by sorting stocks according to their

exposure to the fiscal uncertainty factor.
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Panel A in Table 4 reports the first stage regression results of regression the respec-

tive portfolio excess returns on the market excess returns mktt and the fiscal uncertainty

HMLf factor. As expected given the sorting procedure, the coefficients on the fiscal un-

certainty factor are monotonically increasing in the portfolios. Apart from the coefficient

βF on portfolio 4, which is very close to zero, all coefficients are statistically strongly

significant. The CAPM betas are close to—and often not significantly different from—

one.

To estimate the factor prices λ we follow the traditional two-stage procedure of Fama

and MacBeth (1973) and regress the estimated betas on the average excess portfolio

returns in the second stage regression. In line with the countercyclical nature of the

fiscal uncertainty we find a negative market price of risk for HMLf equal to minus 52

basis points per month (or −6.26% annualized). This is not statistically different from

the average HMLf return of minus 55 basis points per month. The Shanken (1992)-

corrected standard errors are reported in brackets.

[Insert Figure 3 and Table 4 here.]

Figure 3 compares the performance of the simple CAPM with only the market excess

return as a factor and a two-factor model that includes that fiscal uncertainty factor.

Panel A plots the actual and predicted returns for our test portfolios using the CAPM

whereas Panel B plots the same quantities for the extended model. The R2 in the second

stage regression for the CAPM is 90% whereas adding the fiscal uncertainty factor drives

the second stage R2 up to 99%.

In line with the previous portfolio sorting approach, we find that fiscal uncertainty

risk is priced in the cross section of stock returns with a negative price.

3 Conclusion

In this paper, we study the implications of fiscal uncertainty on the cross-section of

stock returns. We first propose a general equilibrium model where heterogeneous agents

disagree on the extent to which public spending affects the aggregate output growth rate.
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More precisely, agents disagree on the size of the fiscal multiplier: agent a (b) believes

that the government sets a larger (smaller) long-term goal for GDP growth rate induced

by public intervention. This disagreement generates persistent divergence of their beliefs

about the evolution of future state variables, and the likelihood ratio of these beliefs is

a proxy for the uncertainty about the fiscal rule.

To model a cross-section of firms, we adopt a framework similar to Leland (1994)

and provide closed-form solutions for equilibrium equity and debt prices and their risk

premia. Using calibrated parameters, we show that fiscal disagreement is priced in

equilibrium and receive a negative market price of risk.

To test our theory in the data, we construct a novel measure of fiscal uncertainty using

a large cross section of survey data on future government budget deficits. In particular,

using a filtering approach, we estimate forecaster by forecaster her/his perceived fiscal

effectiveness. Fiscal disagreement is then defined as the difference between forecasters

who believe that fiscal policy is effective and ineffective. Using this proxy, we find that

exposure to fiscal uncertainty negatively and significantly predicts future stock returns.

In particular, we find that firms with low exposure have higher returns than firms with

lower exposure. A portfolio which is long high exposure firms and short low exposure

returns produces an annualized return of −6.5%, which is highly statistically significant

and is not subsumed by other standard risk factors.
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4 Tables

Table 1

Fiscal Uncertainty Portfolios Summary Statistics

This table reports summary statistics of portfolios sorted according to their exposure to
fiscal uncertainty measured by βfi,t in the following regression:

rxi,t = αi,t + βMi,t rx
m
t + βfi,t∆φ̂t + εi,t,

pf1 (pf5) is the portfolio with stocks with the lowest (highest) exposure and HMLf is
the portfolio which is long pf5 and short pf1. βf and βfpost are the pre- and post-sorting
betas. Returns and standard deviations are annualized and expressed in percent. The
data runs from February 1996 to December 2012.

pf1 pf2 pf3 pf4 pf5 HMLf

mean 13.97 11.65 9.47 9.31 7.39 -6.58
std. dev. 27.05 19.81 17.68 18.82 25.75 9.00
t-stat (2.13) (2.42) (2.21) (2.04) (1.18) (-3.02)
skewness -0.17 -0.65 -0.68 -0.76 -0.24 -0.90
kurtosis 2.04 2.94 2.57 2.16 0.96 5.85
βf -0.472 -0.142 -0.008 0.123 0.442

βfpost -0.167 -0.044 -0.018 -0.0400 0.230
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Table 2

Fiscal Uncertainty Portfolio Alphas and Factor Loadings

This table reports average returns, together with the CAPM alpha from a regression
that includes only the market, the three Fama and French factors (mkt, smb, hml) and
the momentum factor (mom). The last four columns report the factor loadings from
these factors onto the different portfolios. pf1 (pf5) is the portfolio of stocks with the
lowest (highest) fiscal uncertainty beta, and HMLf is a portfolio which is long pf5 and
short pf1. The data runs from February 1996 to December 2012.

Alphas 4-factor loadings
return CAPM 3 factor 4 factor mkt smb hml mom

pf1 13.97 0.52 0.30 0.30 1.16 0.99 0.14 0.00
pf2 11.65 0.47 0.23 0.22 0.96 0.67 0.34 0.02
pf3 9.47 0.33 0.12 0.12 0.90 0.52 0.35 0.00
pf4 9.31 0.29 0.07 0.07 0.96 0.56 0.35 -0.02
pf5 7.39 0.00 -0.20 -0.18 1.16 0.85 0.14 -0.07

HMLf -6.58 -0.52 -0.49 -0.48 0.00 -0.14 0.00 -0.07
t-stat (-3.01) (-3.15) (-3.20) (-3.20) (0.02) (-1.58) (0.05) (-1.63)
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Table 3

Fiscal Uncertainty and Other Factors

This table reports mean, standard deviation (stdev) and the Sharpe ratio (SR) all in
annualized terms together with the unconditional correlations between the HMLf port-
folio derived from sorting stock returns according to their fiscal uncertainty exposure,
the three Fama and French factors (mrkt, smb, hml) and the momentum factor (mom).
The data runs from February 1996 to December 2012.

mean stdev SR correlation
HMLf -6.58 9.00 -0.73 1.00
mrkt 5.46 16.53 0.33 -0.08 1.00
smb 3.23 12.70 0.25 -0.23 0.26 1.00
hml 3.30 12.07 0.27 0.08 -0.24 -0.36 1.00
mom 5.17 19.80 0.26 -0.19 0.19 0.17 -0.01 1.00
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Table 4

Estimating the price of fiscal uncertainty risk: HMLf

Test assets are the five portfolios sorted based on exposure to the fiscal uncertainty risk factor
∆φ̂. HMLf is the difference between the excess return on the high beta portfolio and the
excess return on the low beta portfolio. Panel A reports factor betas and Newey and West
(1987) standard errors (in parentheses) while Panel B reports the Fama and MacBeth (1973)
factor prices and standard errors (in parentheses). Shanken (1992)-corrected standard errors
are reported in brackets. Data is monthly and runs from February 1996 through December
2012.

Panel A: Factor betas

α mkt HMLf R2

pf1 0.14 1.30 -0.73 0.72
(0.44) (23.78) (-3.03)

pf2 0.27 1.02 -0.39 0.78
(1.10) (19.26) (-2.99)

pf3 0.25 0.94 -0.16 0.79
(1.15) (21.17) (-1.76)

pf4 0.32 1.00 0.06 0.78
(1.32) (19.90) (0.53)

pf5 0.14 1.30 0.27 0.69
(0.44) (23.78) (1.13)

Panel B: Factor prices

mkt HMLf R2

0.68 -0.52 0.99
(1.75) (-2.85)
[1.74] [−2.85]
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Table 5

Calibration: Parameter Values

This table presents structural parameter values for the calibration exercise. Parameters
with an i subscript refer to a US representative BBB-rated firm.

δ γ µ σc σg λ ω b Φ
a

Φ
b

0.03 5 0.00606 0.0491 0.0487 0.3995 2*0.3995 0.09 0.00574 0.00204
α k µi σi βi ρi aq aβ aρ aD

0.8 0.5 µ 0.2474 1 0.1998 0.0491 0.5716 0.3938 -0.05887
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5 Figures

Fiscal uncertainty and economic policy uncertainty, corr = 60%
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Figure 1. Fiscal disagreement proxy

This figure plots fiscal disagreement estimated from survey data on future government
budget together with the Baker, Bloom and Davies (2013) economic policy index and
the VIX (lower panel). Data is monthly and runs from 1994 to 2012.
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Figure 2. Portfolio returns

The upper panel plots monthly returns of a portfolio which is long stocks with high
exposure to fiscal uncertainty (pf5) and short stocks with low exposure to fiscal uncer-
tainty (pf1). The lower panel plots the cumulative returns from these portfolios. Data
is monthly and runs from 1996 to 2012.
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Figure 3. Model performance

The figure plots the actual annualized mean excess returns in percent versus the predicted
excess returns for the five portfolios sorted based on exposure to the fiscal uncertainty factor.
Panel A displays the results for for the CAPM, i.e., by using only the market excess return (mkt)
as a pricing factor while Panel B displays the model performance when the fiscal uncertainty
factor HMLf is included in the linear pricing model. Data is monthly and runs from February
1996 to December 2012.
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APPENDIX A : Proofs and derivations

Proof of Proposition 1.

Agents of groups a and b have time additive expected utility of the CRRA type, with
the same RRA coefficient γ, and subjective impatience rate δ. As customary in endowment
economies, the agents are initially endowed with a fraction ki, i = a, b of the market portfolio,
so that W i

0 = kiS0, where W i
0 is group’s i initial wealth and S0 the initial price of the market

portfolio. By market completeness there is a unique state-price density, represented as ξit
relatively to group i’s belief. The martingale approach of Cox and Huang (1988) implies that
each agent solves the static consumption-investment problem:

sup
c

Ei
[∫ ∞

0
e−δ s

c1−γs

1− γ
ds

∣∣∣∣∣Fc,g0

]
(A-1)

s.t. Ei
[∫ ∞

0
ξiscs ds

∣∣∣∣Fc,g0

]
≤W i

0 (A-2)

Since X0 = Eb[ξbtXt|Fc,g0 ] = Ea[θtξbtXt|Fc,g0 ] = Ea[ξat |F
c,g
0 ], for any Fc,gt measurable contingent

claim, we have ξat = θtξ
b
t . Taking this into account, the first order conditions for problem

(A-1)-(A-2) mandate that optimal individual consumption policies are cat = (eδtϑaξat )−1/γ and
cbt = (eδtϑbξat /θt)

−1/γ , where ϑi are the Lagrange multiplier such that the individual budget
constraints (A-2) bind. Imposing ξa0 = ϑa and θ0 = ϑa/ϑb, the aggregate resource constraint
reads:

(eδtξat )−1/γ + (eδtξat /θt)
−1/γ = gtCt,

from which we retrieve the equilibrium state price-density (14). Applying Itô’s lemma to the
last expression and to (13), and equating drift and diffusion components of the two dynamics,
we obtain the equilibrium interest rate (15) and market prices of risk (17)-(18).

Proof of Proposition 2 .

We are going to provide a characterization for the equilibrium price and risk premium
of a generic security which guarantees a stream of dividends with rate Xs, s ∈ [0,∞), with
dynamics:

dXt

Xt
=
(
µX + βXÂt

)
dt+ σX

(
ρX dẐ

a
t +

√
1− ρ2X dWt

)
(A-3)

The no-arbitrage pricing formula reads:

SXt = Ea
[∫ ∞

t
e−δ(s−t)

ξas
ξat
Xs ds

∣∣∣∣Fc,gt ] (A-4)

=
Xt(

1 + θ
1
γ

t

)γEa
[∫ ∞

t

(
Csgs
Ctgt

)−γ (
1 + θ

1
γ
s

)γ Xs

Xt
ds

∣∣∣∣∣Fc,gt
]

(A-5)
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Note that

e−δ(s−t)
(
Csgs
Ctgt

)−γ Xs

Xt
= exp

(
m0(t, s) + (βX − γ(1− α))

∫ s

t
Âaudu

)
ζs
ζt

(A-6)

ζs
ζt

= exp

(
−1

2

(
σ2X + γ2(σ2c + σ2g)− 2γσXσcρX

)
(s− t) (A-7)

+(σXρX − γσc)(Ẑat − Ẑas )− γσg(B̂a
t − B̂a

s ) + σX

√
1− ρ2X(Wt −Ws)

)
m0(t, s) =

(
−δ + µX −

σ2X
2
− γ

(
µc −

σ2c
2

)
+ γ

σ2g
2

)
(s− t) (A-8)

+
1

2

(
σ2X + γ2(σ2c + σ2g)− 2γσXσcρX

)
(s− t) (A-9)

We can use the stochastic exponential (A-7) for an absolutely continuous change of probability
measure, with the dynamics of the state variable under the new measure dictated by Girsanov
theorem. Thus

SXt =
Xt(

1 + θ
1
γ

t

)γEa,∗ [∫ ∞
t

em0(t,s)+(βX−γ(1−α))
∫ s
t Â

a
udu

(
1 + θ

1
γ
s

)γ
ds

∣∣∣∣Fc,gt ] (A-10)

dÂat = λ(Aa − Âat )dt+
ηa + σcσAρa

σc
(σXρX − γσc) dt+ ηaαγdt+ (A-11)

ηa + σcσAρi
σc

dẐa,∗t − ηa
α

σg
dB̂a,∗

t (A-12)

dθt
θt

= −φt
σc

(σXρX − γσc) dt+ γαφtdt− φt
(

1

σc
dẐa,∗t −

α

σg
dB̂a,∗

t

)
, (A-13)

dφt = ω(φ− φt)dt+ γ(ηa − ηb)αdt+ (ηa + σAσcρa − ηb)
(σXρX − γσc)

σc
dt− (A-14)

(ηa − ηb)
α

σg
dB̂a,∗

t + (ηa + σAσcρa − ηb)
1

σc
dẐa,∗t (A-15)

Consider the function J(t, s) = Ea,∗
[
e(βX−γ(1−α))

∫ s
t Â

a
udu
∣∣∣Fc,gt ]. By Feyman-Kac theorem, J

solved the partial differential equation:

Jt + J
Âa

[
λ(Aa − Âat ) +

ηa + σcσAρa
σc

(σXρX − γσc) + ηaαγ

]
+

1

2
J
ÂaÂa

[
(ηa + σcσAρa)

2

σ2c
+
η2aα

2

σ2g

]
+ J (βX − γ(1− α)) Âat = 0 (A-16)
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with the terminal condition J(s, s) = 1. The solution reads

J(t, s) = exp(L(t, s) +H(t, s)Âat ) (A-17)

H(t, s) =
(βX − γ(1− α))

λ

(
1− e−λ(s−t)

)
(A-18)

L(t, s) =

∫ s−t

0

[
λAa +

ηa + σcσAρa
σc

(σXρX − γσc) + ηaαγ

]
H(0, u)du (A-19)

+
1

2

∫ s−t

0

[
(ηa + σcσAρa)

2

σ2c
+
η2aα

2

σ2g

]
H(0, u)2du (A-20)

By a change of numeraire technique analogous to the definition of the Forward-measure –
Geman, El Karoui and Rochet (1995) – we can write:

Ea,∗
[
e+(βX−γ(1−α))

∫ s
t Â

a
udu

(
1 + θ

1
γ
s

)γ∣∣∣∣Fc,gt ] = J(t, s)Ea,∗∗(s)
[(

1 + θ
1
γ
s

)γ∣∣∣∣Fc,gt ]
We need the dynamics of the state variables θt and φt under the new measure, namely:

dθt
θt

= −φt
σc

(σXρX − γσc) dt+ γαφtdt−
J
Âat

(t, s)

J(t, s)

(
ηa + σcσAρa

σ2c
+ ηa

α2

σ2g

)
φtdt

−φt
(

1

σc
dẐ

a,∗∗(s)
t − α

σg
dB̂

a,∗∗(s)
t

)
, (A-21)

dφt = ω(φ− φt)dt+ γ(ηa − ηb)αdt+ (ηa + σAσcρa − ηb)
(σXρX − γσc)

σc
dt

+
J
Âat

(t, s)

J(t, s)

(
(ηa + σcσAρa)(ηa + σcσAρa − ηb)

σ2c
+ ηa(ηa − ηb)

α2

σ2g

)
dt

−(ηa − ηb)
α

σg
dB̂

a,∗∗(s)
t + (ηa + σAσcρa − ηb)

1

σc
dẐ

a,∗∗(s)
t , (A-22)

where
J
Âat

(t,s)

J(t,s) = H(t, s). We can then rewrite the security price as:

SXt =
Xt(

1 + θ
1
γ

t

)γ ∫ ∞
t

em0(t,s)+L(t,s)+H(t,s)ÂatEa,∗∗(s)
[(

1 + θ
1
γ
s

)γ∣∣∣∣Fc,gt ] ds (A-23)

Now consider the expression

(
1 + θ

1
γ
s

)γ
. We have:

(
1 + θ

1
γ
s

)γ
= θ

1
2
s

(
θ
− 1

2γ
s + θ

1
2γ
s

)γ
= θ

1
2
s

(
2 cosh

(
νs
2γ

))γ
=

θ
1
2
s

(
θ
− 1

2γ
s + θ

1
2γ
s

)γ
(

2 cosh
(
νs
2γ

))γ−γ
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where γ denotes the smallest integer greater than γ,14 and νs = log θs. We use the following
Fourier representation:

1(
2 cosh

(
νs
2γ

))γ−γ =

∫ ∞
−∞

e2πiνszT (z)dz (A-24)

T (z) =

∫ ∞
−∞

e−2πiνsz
1(

2 cosh
(
νs
2γ

))γ−γ dνs
=

Γ
(
γ−γ
2 − γiz

)
Γ
(
γ−γ
2 + γiz

)
Γ
(
γ−γ
2

) (A-25)

The explicit form (A-25) of the Fourier transform T (z) is derived in Martin (2013). Since γ is

an integer, we can expand the term (θ
− 1

2γ
s + θ

1
2γ
s )γ using Newton binomial formula. Collecting

all terms, we can write:

SXt =
Xt(

1 + θ
1
γ

t

)γ ∫ ∞
t

em0(t,s)+L(t,s)+H(t,s)Âat

∫ ∞
−∞

γ∑
j=0

(
γ
j

)
Ea,∗∗(s)

[
θχ(j,z)s

∣∣∣Fc,gt ] T (z)dz

 ds

(A-26)
where χ(j, z) = 1

2 + 2j−γ
2γ + 2πiz. Let

K(t, s, j, z) = Ea,∗∗(s)
[
θχ(j,z)s

∣∣∣Fc,gt ]
= θ

χ(j,z)
t Ea,∗∗(s)

[
exp

(
−
∫ s

t
φuµθ(u, s)χ(j, z)du−

∫ s

t

1

2
φ2u

(
1

σ2c
+
α2

σ2g

)
χ(j, z)du−∫ s

t
χ(j, z)φu

(
1

σc
dẐa,∗∗(s)u − α

σg
dB̂a,∗∗(s)

u

))∣∣∣∣Fc,gt ]
= Ea,∗∗∗(s)

[
exp

(
−
∫ s

t
φuµθ(u, s)χ(j, z)du−

∫ s

t

1

2
φ2u

(
1

σ2c
+
α2

σ2g

)
(χ(j, z)

−χ(j, z)2)du
)∣∣Fc,gt ] (A-27)

where

µθ(t, s) =
1

σc
(σXρX − γσc)− γα+H(t, s)

(
ηa + σcσAρa

σ2c
+ ηa

α2

σ2g

)
.

14Any integer larger than γ would be suitable. The reason to multiply and divide by

(
θ
− 1

2γ
s + θ

1
2γ
s

)γ
is that the Gamma function appearing in the Fourier tranform is not defined for negative arguments.
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In (A-27) we have performed the usual change of probability measure using the stochastic

exponential embedded in θ
χ(j,z)
s . The dynamics of φt under this new measure are given by:

dφt = (µ0φ(t, s) + µ1φ(t, s)φt)dt− (ηa − ηb)
α

σg
dB̂

a,∗∗∗(s)
t + (ηa + σAσcρa − ηb)

1

σc
dẐ

a,∗∗∗(s)
t

µ0φ(t, s) = ωφ+ γ(ηa − ηb)α+ (ηa + σAσcρa − ηb)
(σXρX − γσc)

σc

+H(t, s)

(
(ηa + σcσAρa)(ηa + σcσAρa − ηb)

σ2c
+ ηa(ηa − ηb)

α2

σ2g

)
µ1φ(t, s) = −ω − (ηa + σAσcρa − ηb)

χ(j, z)

σ2c
− χ(j, z)(ηa − ηb)

α2

σ2g
(A-28)

By Feyman-Kac theorem, K solves the partial differential equation

Kt +Kφ

(
µ0φ(t, s) + µ1φ(t, s)φt

)
+

1

2
Kφφ

[
(ηa + σcσAρa − η2b )2

σ2c
+

(ηa − ηb)2α2

σ2g

]
−K

(
φtµθ(t, s)χ(j, z) +

1

2
φ2t

(
1

σ2c
+
α2

σ2g

)
(χ(j, z)− χ(j, z)2)

)
= 0 (A-29)

with the terminal condition K(s, s, j, z) = 1. The solution of (A-29) is easily seen to be of the
form

K(t, s, j, z) = exp
(
F0(t, s, j, z) + F1(t, s, j, z)φt + F2(t, s, j, z)φ

2
t

)
(A-30)

with coefficients F deterministic functions of time, solving the forward system of ODEs:

−
.
F 2 = 2F 2

2

[
(ηa + σcσAρa − η2b )2

σ2c
+

(ηa − ηb)2α2

σ2g

]
+ 2F2µ

1
φ(t, s)

−1

2

(
1

σ2c
+
α2

σ2g

)
(χ(j, z)− χ(j, z)2) (A-31)

−
.
F 1 = F1µ

1
φ(t, s) + 2F1F2

[
(ηa + σcσAρa − η2b )2

σ2c
+

(ηa − ηb)2α2

σ2g

]
+ 2F2µ

0
φ(t, s)

−µθ(t, s)χ(j, z) (A-32)

−
.
F 0 = F1µ

0
φ(t, s) +

(
F2 +

F 2
1

2

)[
(ηa + σcσAρa − η2b )2

σ2c
+

(ηa − ηb)2α2

σ2g

]
(A-33)

with Fi(s, s, j, z) = 0, i = 0, 1, 2. The first ODE is a standard Riccati one, thus it can be solved
explicitly. For the second and third, though some explicit form could probably be given, we
rely on a numerical ODE solver. To summarize:

SXt =
Xt(

1 + θ
1
γ

t

)γ ∫ ∞
t

em0(t,s)+L(t,s)+H(t,s)Âat

 γ∑
j=0

(
γ
j

)
θ

1
2
+ 2j−γ

2γ

t ×

×
(∫ ∞
−∞

e2πiz log θt T̃ (j, z, t, s, φt)dz

)]
ds (A-34)

T̃ (j, z, t, s, φt) = T (z) exp
(
F0(t, s, j, z) + F1(t, s, j, z)φt + F2(t, s, j, z)φ

2
t

)
(A-35)
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The (inverse) Fourier transform
(∫∞
−∞ e

2πiz log θt T̃ (j, z, φt)dz
)

can be implemented very effi-

ciently using the FFT algorithm, rather than generic numerical integration. The IMSL Fortran
Library manual (Math Library, Ch.6, Usage Notes) explains clearly how to approximate the
continuous Fourier transform as a discrete one, and implement it with a FFT routine.

Given the price process SXt , the conditional risk premium of the security is readily obtained
from its definition in a diffusive market model: (Instantaneous Stock Return Volatility Vector)
· (Market Price of Risk Vector). The former is provided by Ito’s lemma applied to (A-34). If
S(Xt, Â

a
t , φt, θt) denotes the RHS of (A-34), the return volatility components are (discarding

the unpriced Brownian component W ):

σXZ,t =
∂ logS
∂Xt

XtσXρX +
∂ logS
∂Âat

ηa + σAσcρa
σc

− ∂ logS
∂φt

(ηa + σAσcρa − ηb)
1

σc
− ∂ logS

∂θt
θt
φt
σc

σXB,t = −∂ logS
∂Âat

αηa
σg

+
∂ logS
∂θt

θt
αφt
σg
− ∂ logS

∂φt

α(ηa − ηb)
σg

. (A-36)

with

∂ logS
∂Xt

=
1

SXt

1(
1 + θ

1
γ

t

)γ ∫ ∞
t

em0(t,s)+L(t,s)+H(t,s)Âat

 γ∑
j=0

(
γ
j

)
θ

1
2
+ 2j−γ

2γ

t ×

×
(∫ ∞
−∞

e2πiz log θt T̃ (j, z, t, s, φt)dz

)]
ds (A-37)

∂ logS
∂Âat

=
1

SXt

Xt(
1 + θ

1
γ

t

)γ ∫ ∞
t

H(t, s)em0(t,s)+L(t,s)+H(t,s)Âat

 γ∑
j=0

(
γ
j

)
θ

1
2
+ 2j−γ

2γ

t ×

×
(∫ ∞
−∞

e2πiz log θt T̃ (j, z, t, s, φt)dz

)]
ds (A-38)

∂ logS
∂φt

=
1

SXt

Xt(
1 + θ

1
γ

t

)γ ∫ ∞
t

em0(t,s)+L(t,s)+H(t,s)Âat

 γ∑
j=0

(
γ
j

)
θ

1
2
+ 2j−γ

2γ

t ×

×
(∫ ∞
−∞

e2πiz log θt(F1(t, s, j, z) + 2F2(t, s, j, z))T̃ (j, z, t, s, φt)dz

)]
ds (A-39)

∂ logS
∂θt

= − 1

SXt

Xtθ
1
γ
−1(

1 + θ
1
γ

t

)γ+1

∫ ∞
t

em0(t,s)+L(t,s)+H(t,s)Âat

 γ∑
j=0

(
γ
j

)
θ

1
2
+ 2j−γ

2γ

t ×

×
(∫ ∞
−∞

e2πiz log θt T̃ (j, z, t, s, φt)dz

)]
ds+ (A-40)

1

SXt

Xt(
1 + θ

1
γ

t

)γ ∫ ∞
t

em0(t,s)+L(t,s)+H(t,s)Âat

 γ∑
j=0

(
γ
j

)
θ

1
2
+ 2j−γ

2γ
−1

t ×

×
(∫ ∞
−∞

e2πiz log θt
(

1

2
+

2j − γ
2γ

+ 2πiz

)
T̃ (j, z, t, s, φt)dz

)]
ds (A-41)
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For the market portfolio case, to which Proposition 2 refers, the specific equilibrium quan-
tities are obtained by setting, Xt = Ct, µX = µc, βx = 1, σX = σc, ρX = 1.

The Unleveraged Firm Value.

The unleveraged firm value given in expression (25) is of the same type as the pricing
functional (A-4) analyzed in the proof of Proposition 2. In particular, after setting Xt =
Eit(1− τ), µX = µi, βx = βi, σX = σi, ρX = ρi, we obtain

V it = Ea
[∫ ∞

t

ξas
ξat
Eis(1− τ)ds

∣∣∣∣Fc,gt ]

= (1− τ)
Eit(

1 + θ
1
γ

t

)γ ∫ ∞
t

em0(t,s)+L(t,s)+H(t,s)Âat

 γ∑
j=0

(
γ
j

)
θ

1
2
+ 2j−γ

2γ

t ×

×
(∫ ∞
−∞

e2πiz log θt T̃ (j, z, t, s, φt)dz

)]
ds (A-42)

T̃ (j, z, t, s, φt) = T (z) exp
(
F0(t, s, j, z) + F1(t, s, j, z)φt + F2(t, s, j, z)φ

2
t

)
(A-43)

All the relevant expressions are detailed in the proof of Proposition 2.

The Default-Free Leveraged Equity Value.

In our numerical strategy (to be detailed below), at the default option expiry time (T ) the
firm is bound to keep its current capital structure, thus we need the value of leveraged equity
for a default-free firm. Following the proof of Proposition 2, the latter is given by:

k̃V it − kBit (A-44)

where we remind that k̃ is the firm’s pay-out ratio, τ is the corporate tax rate, k = k̃(1− τ),
V it is the unleveraged firm value given in (A-42). The value of default-free debt, Bit, is:

Bit = Ea
[∫ ∞

t

ξas
ξat
qids

∣∣∣∣Fc,gt ]

=
qi(

1 + θ
1
γ

t

)γ ∫ ∞
t

em0(t,s)+L(t,s)+H(t,s)Âat

 γ∑
j=0

(
γ
j

)
θ

1
2
+ 2j−γ

2γ

t ×

×
(∫ ∞
−∞

e2πiz log θt T̃ (j, z, t, s, φt)dz

)]
ds (A-45)

T̃ (j, z, t, s, φt) = T (z) exp
(
F0(t, s, j, z) + F1(t, s, j, z)φt + F2(t, s, j, z)φ

2
t

)
(A-46)

All the relevant expressions are detailed in the proof of Proposition 2, after setting Xt = qi,
µX = 0, βx = 0, σX = 0, ρX = 0.

Details of the Construction of the Fiscal Uncertainty Proxy.

We refer to Section 2.2, where we illustrate the construction of our proxy for fiscal uncer-
tainty.
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According to expression (9), individual i perceives GDP growth for the year starting at
date T as:15

log(CT+1)− log(CT ) = µ+

∫ T+1

T
Âis ds+ σc

(
ẐiT+1 − ẐiT

)
dÂis = λ(Ai − Âit)dt+

ηi + σcσAρi
σc

dẐit − ηi
α

σg
dB̂i

t, (A-47)

so that, for any date t ∈ [T − 1, T ), the model-equivalent of the next-year GDP growth survey
forecast reads:

Ei [ log(CT+1)− log(CT )| Fc,gt ] = µ+

∫ T+1

T
Ei
[
Âis

∣∣∣Fc,gt ] ds,
= Di

0(T − t) +Di
1(T − t)Âit, (A-48)

with

Di
0(T − t) = µ+Ai −

(
e−λ(T−t) − e−λ(T+1−t)

) Ai
λ

(A-49)

Di
1(T − t) =

(
e−λ(T−t) − e−λ(T+1−t)

) 1

λ
(A-50)

To obtain these expressions, it suffices to solve the SDE (A-47):

Âis = Âite
−λ(s−t) +Ai

(
1− e−λ(s−t)

)
+

∫ s

t
e−λ(s−u)

(
ηi + σcσAρi

σc
dẐiu − ηi

α

σg
dB̂i

u

)
,

then take expectations conditional on Fc,gt on both sides (whereby the innovation term van-
ishes), and integrate over s from T to T + 1. Similarly, for bt, ratio between Federal budget
deficit and GDP evolving as in (33), the prediction forecast reads

Ei [bT+1 − bT | Fc,gt ] = αb
(
Di

0(T − t)− µ
)

+ αbD
i
1(T − t)Âit. (A-51)

We add Gaussian white noise measurement error to equations (A-48) and (A-51) and use them
as measurement equations in the following state-space model

ĜDPt,T = Di
0(T − t) +Di

1(T − t)Âit + sc ε
c
t (A-52)(

D̂EF

GDP

)
t,T

= αb
(
Di

0(T − t)− µ
)

+ αbD
i
1(T − t)Âit + sb ε

g
t (A-53)

Âit+1 = L0 + L1Â
i
t + sAεt+1, (A-54)

where the Gaussian white noise shocks (εct , ε
g
t , εt) are mutually independent. The discrete-time

dynamics (A-54) of the latent fiscal action Âit, as perceived by the econometrician, are the

15Note that we are not yet classifying forecaster i as member of group a or b, therefore ρi is uncon-
strained at this stage.
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exact (in a distributional sense) monthly discretization of the continuous-time analog (A-47).
Coefficients L0, L1, and sA are given by:

L0 = Ai(1− exp(−λ · 1

12
)), L1 = exp(−λ · 1

12
)

sA =

√
σ2s
2λ

(1− exp(−2λ
1

12
)), σ2s =

(
ηi
α

σg

)2

+

(
ηi + σcσAρi

σc

)2

The Kalman filtering of the latent fiscal action is standard, but we report it here for com-

pleteness. Let yt = [ĜDPt,T , ( ̂DEF/GDP)t,T ]′, dt = [Di
0(T − t), αb

(
Di

0(T − t)− µ
)
]′, Zt =

[Di
1(T − t), αbD

i
1(T − t)]′, and H = diag[s2c , s

2
g]. The initial state of the latent variable is

assumed to be a realization of its stationary distribution: Âi0 ∼ N(a0, a1), a0 = L0/(1 − L1),

a1 = s2A/(1−L2
1). We also denote by Âi

t = E[Âit|F
c,g,f
t ], the estimate of the latent state under

the observation filtration augmented by the analysts forecasts, and by Pi
t = E[(Âit−Âi

t)
2|Fc,g,ft ]

the mean-squared error of Âi
t.

We have Âi
0 = a0 and Pi

0 = a1. Given the estimate Âi
t−1, the prediction of next periods

state and the associated MSE are:

Âi
t|t−1 = E[Âit|F

c,g,f
t−1 ] = L0 + L1Â

i
t−1 (A-55)

Pi
t|t−1 = E[(Âit − Âi

t|t−1)
2|Fc,g,ft−1 ] = L2

1P
i
t + s2A (A-56)

Consequently, the optimal prediction of the measurement yt and associated MSE are

yt|t−1 = E[yt|Fc,g,ft−1 ] = dt + ZtÂ
i
t|t−1 (A-57)

Ft = E[(y − yt|t−1)(y − yt|t−1)
′|Fc,g,ft−1 ] = ZtP

i
t|t−1Z

′
t + H (A-58)

Indeed the joint distribution of Âit and yt conditional on Fc,g,ft−1 is multivariate Gaussian with

means Âi
t|t−1 and yt|t−1, respectively, and variance-covariance matrix(

Pi
t|t−1 Pi

t|t−1Z
′
t

ZtP
i
t|t−1 Ft

)

Thus, once yt is observed, one can use the closed-form for the conditional expectation E[Âit|yt]
available for Gaussian random vectors, to obtain an updated estimate of the latent state and
of the corresponding MSE:

Âi
t = = Âi

t|t−1 + Pi
t|t−1Z

′
tF
−1
t (yt − yt|t−1) (A-59)

Pi
t = = Pi

t|t−1 −Pi
t|t−1Z

′
tF
−1
t ZtP

i
t|t−1 (A-60)

Whenever an observation is missing, that is, the forecaster/institution did not respond to the
survey, we simply skip the updating step, hence we set Âi

t = Âi
t|t−1 and Pi

t = Pi
t|t−1.

We obtain forecaster-specific first stage parameter estimates θ̂i1 = (µ̂, λ̂, Âi, α̂b, ŝA) by max-
imizing the log likelihood of the prediction errors of the measurements yt:

−Ni

2
log(2π)− 1

2

Ni∑
t=1

log(|Ft|)−
1

2

Ni∑
t=1

(yt − yt|t−1)
′F−1t (yt − yt|t−1)
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where Ni is the sample size available for each forecaster.

This procedure is clearly not able to identify the correlation parameter ρi. To this purpose,
the second stage estimation employs data on realized GDP growth and growth of Government
expenditure as a fraction of GDP. We consider a state-space model where the measurement
equations are a discretized version of the system (1)-(2). The dynamics of the latent state Ait to
consider are the true ones in (4), rather than dynamics (A-47) under the forecaster information
filtration, because the signals employed at this stage measure realized quantities rather than
forecasts. To summarize, the state-space system reads:

log(Ct+1)− log(Ct) = (µ− σ2c
2

+ Âit)∆t+ σc
√

∆tεct+1 (A-61)

log(g̃t+1)− log(g̃t) = αÂit∆t− σg
√

∆tεgt+1 (A-62)

At+1 = Ai(1− exp(−λ∆t)) + exp(−λ∆t)At + (A-63)√
σ2A
2λ

(1− exp(−2λ∆t))

(
ρiε

c
t+1 +

√
1− ρ2i ε

A
t+1

)√
∆t, (A-64)

where ∆t = 1/4, all Gaussian shocks ε are mutually independent, and, as in the first stage, we
have used the (distributionally) exact discretization of an Ornstein-Uhlenbeck process. We ex-
ogenously set α = 1, following contrasting estimates of fiscal multipliers in the macroeconomics
literature. We constrain parameters λ and Ai to coincide with their first-stage estimates, and
we impose that: (

ηi
α

σg

)2

+

(
ηi + σcσAρi

σc

)2

= σ̂s
2,

where σ̂s
2 is also a first-stage estimate. We estimate the free parameters, most importantly

ρi, by maximum likelihood from Kalman filter prediction errors. The procedure is identical to
the first stage, with the exception of the covariance between At and yt conditional on Fc,g,ft−1 ,
which has an additional term, due to the covariance between the latent fiscal action and GDP
growth, namely:

cov[At,yt|Fc,g,ft−1 ] = ZtP
i
t|t−1 +

(
σc

√
σ2
A

2λ (1− exp(−2λ∆t)) ρ∆

0

)

After properly adjusting the updating equations for the modified covariance, the rest of the
procedure is unchanged.

To compute our fiscal uncertainty measure as detailed in the text, we use first stage Kalman
filter estimates Âi

t, because we are interested in extracting forecaster-specific estimates of the
fiscal action, of which analyst forecasts provide a direct signal.

Numerical Method for Firm’s Equity Value.

Following the discussion in Section 1.4, firm i’s equity is the value function of the optimal
stopping problem

Vt = suptd E
a

[∫ td

t

ξas
ξat
Di
sds+

ξatd
ξat

(
p(ϕl − ϕr)V itd

)∣∣∣∣Fc,gt ] . (A-65)

where V itd denotes the unleveraged firm value and td is any stopping time with respect to the
filtration Fc,gt . We use a simulation-based method adapted from the Longstaff and Schwartz
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(2001) American option pricing algorithm. The method works by backward induction, solving
recursively the relevant dynamic programming equation at a finite number of exercise (‘de-
faultable’ in our case) dates. Thus we fix an ‘expiration’ date T , after which the option to
default is no longer available, and the equity value of the leveraged firm coincides with its
default-free counterpart given in (A-44). We also assume that the default time td in (A-65) is
one of a finite sequence td(j), j = 1, . . . , nd, with td(1) = t (evaluation time) and td(nd) = T .
We denote by ∆td the (constant) time interval between decision dates.

There are four relevant state variables for problem (A-65), collected in a vector Ys =
[Eis, Â

a
s , φs, θs]

′. We first perform a useful change of probability measure, similarly to the proof
of Proposition 2, in order to rewrite (A-65) as:

Vt = suptd
1(

1 + θ
1
γ

t

)γEa,∗ [∫ td

t
e
∫ s
t

[
−γ(1−α)Âau−γµ+

γ(γ+1)
2

(σ2
c+σ

2
g)
]
du
(

1 + θ
1
γ
s

)γ
Di
sds

+e
∫ td
t

[
−γ(1−α)Âau−γµ+

γ(γ+1)
2

(σ2
c+σ

2
g)
]
du
(

1 + θ
1
γ

td

)γ (
p(ϕl − ϕr)V itd

)∣∣∣∣Fc,gt ] . (A-66)

and the dynamics of the state variables under the new measure are:

dEit = (µi + βiÂ
a
t − γσcσiρi)dt+ σi(ρidẐ

a,∗
t +

√
1− ρ2i dWt) (A-67)

dÂat = λ(Aa − Âat )dt−
ηa + σcσAρa

σc
γσcdt+ ηaαγdt+

ηa + σcσAρi
σc

dẐa,∗t − ηa
α

σg
dB̂a,∗

t (A-68)

dθt
θt

= φtγ(1− α)dt− φt
(

1

σc
dẐa,∗t −

α

σg
dB̂a,∗

t

)
, (A-69)

dφt = ω(φ− φt)dt+ γ(ηa − ηb)αdt− (ηa + σAσcρa − ηb)γdt−

(ηa − ηb)
α

σg
dB̂a,∗

t + (ηa + σAσcρa − ηb)
1

σc
dẐa,∗t (A-70)

• Conditional on the current realization Yt, N sample paths of the state vector are sim-
ulated on the horizon [t, T ], using (for instance) an Euler discretization scheme applied
to SDEs (A-67)-(A-70). Obviously, the discretization frequency of the paths, 1/∆s,16

is larger than the decision frequency 1/∆td. We denote by Ys(ωj), j = 1, . . . , N the
realization of Y at time s along the simulated path ωj .

• At the final date td(nd) = T , the lack of default results in the firm turning into a
default-free leveraged one, so that:

V i
T (ωj) = max

(
p(ϕl − ϕr)V iT (YT (ωj)), k̃V iT (YT (ωj))− kBiT (YT (ωj))

)
j = 1, . . . , N.

(A-71)
where we have used expression (A-44).

• At a generic default date td(i), i = 1, . . . , nd − 1, the dynamic programming principle
implies that

V i
td(i)

(ωj) = max
(
p(ϕl − ϕr)V itd(i)(Ytd(i)(ωj)), Ctd(i)(Ytd(i)(ωj))

)
j = 1, . . . , N. (A-72)

16In practice, we use ∆s = 1/360.
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where the continuation value along the path ωj , Ctd(i)(Ytd(i)(ωj)) is the expected dis-
counted value of: i) the cumulative dividend stream until next decision date, and ii) the
equity value next decision date:

Ctd(i)(Ytd(i)(ωj)) =
1(

1 + θ
1
γ

td(i)

)γEa,∗
[∫ td(i+1)

td(i)
e
∫ s
td(i)

[
−γ(1−α)Âau−γµ+

γ(γ+1)
2

(σ2
c+σ

2
g)
]
du×

×
(

1 + θ
1
γ
s

)γ
Di
sds+ e

∫ td(i+1)

td(i)

[
−γ(1−α)Âau−γµ+

γ(γ+1)
2

(σ2
c+σ

2
g)
]
du×

×
(

1 + θ
1
γ

td(i+1)

)γ
V i
td(i+1)

∣∣∣∣Ytd(i)(ωj)] (A-73)

Let y(td(i), td(i+1), ωj) denote the realization of the argument of the conditional expec-
tation along the simulated path ωj :

y(td(i), td(i+ 1), ωj) =
1(

1 + θtd(i)(ωj)
1
γ

)γ
[∫ td(i+1)

td(i)

(
1 + θs(ωj)

1
γ

)γ
Di
s(ωj)×

e
∫ s
td(i)

[
−γ(1−α)Âau(ωj)−γµ+

γ(γ+1)
2

(σ2
c+σ

2
g)
]
du
ds+ e

∫ td(i+1)

td(i)

[
−γ(1−α)Âau(ωj)−γµ+

γ(γ+1)
2

(σ2
c+σ

2
g)
]
du×

×
(

1 + θtd(i+1)(ωj)
1
γ

)γ
V i
td(i+1)(ωj)

]
(A-74)

As usual, the (ωj) arguments denotes a realization along the simulated path ωj . Next
exercise-date equity value is known from the previous step. As in Longstaff and Schwartz
(2001), we approximate the continuation value (A-73) by projecting y(td(i), td(i+1), ωj)
on a suitable multidimensional polynomial basis.17 Namely, letting X(Ys) denote the
nX− dimensional row vector with the individual summands of the polynomial basis
evaluated at Ys, we consider the model

y(td(i), td(i+ 1), ωj) = X(Ytd(i)(ωj)) · β(td(i)) + εj j = 1, . . . , N (A-75)

for a nX−dimensional column vector of coefficients β(td(i)), whose OLS estimator is:

β∗(td(i)) = [X(Ytd(i)(ωj))
′X(Ytd(i)(ωj))]

−1X(Ytd(i)(ωj))
′y(td(i), td(i+ 1), ωj) (A-76)

where X( · ) is the N × nX−dimensional matrix obtained by stacking column-wise row
vectors X(Ytd(i)(ωj)) for all simulated paths, and similarly y(td(i), td(i+ 1), ωj). There-
fore:

Ctd(i)(Ytd(i)(ωj)) ≈ X(Ytd(i)(ωj)) · β
∗(td(i)) (A-77)

17Following Longstaff and Schwartz (2001), a tensor product of n−degree (with n = 2 or 3) Laguerre

polynomials in the single state variables , Ei, Âa, φ, θ is a suitable choice.
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• Following Longstaff and Schwartz (2001), we implement the dynamic programming equa-
tion (A-72) as

V i
td(i)

(ωj) =



p(ϕl − ϕr)V itd(i)(Ytd(i)(ωj))

if p(ϕl − ϕr)V itd(i)(Ytd(i)(ωj)) > X(Ytd(i)(ωj)) · β
∗(td(i))

y(td(i), td(i+ 1), ωj)
if p(ϕl − ϕr)V itd(i)(Ytd(i)(ωj)) ≤ X(Ytd(i)(ωj)) · β

∗(td(i))

(A-78)
rather than selecting fitted continuation values in the second alternative (y(td(i), td(i+
1), ωj) is given in (A-74)).

• Iterating this procedure backward, we obtain an estimate of the current firm i’s equity
value:

V i
t ≈

∑N
j=1 V

i
td(1)

(ωj)

N
(A-79)

This estimator is known to be upward biased – see Glasserman (2004), Section 8.6.
Alternatively, we can use the estimates β∗(td(i)) i = 1, . . . , nd in the representation of
the continuation values to form a default rule for a fresh set of simulated paths Ys(ωj),
s ∈ [t, T ], j = 1, . . . , N , so that:

V i
t ≈

∑N
j=1 ỹ(t, td(zj), ωj)

N
(A-80)

ỹ(t, td(zj), ωj) =
1(

1 + θ
1
γ

t

)γ
[∫ td(zj)

t

(
1 + θs(ωj)

1
γ

)γ
Di
s(ωj)×

e
∫ s
t

[
−γ(1−α)Âau(ωj)−γµ+

γ(γ+1)
2

(σ2
c+σ

2
g)
]
du
ds+

(
1 + θtd(zj)(ωj)

1
γ

)γ
×

×e
∫ td(zj)
t

[
−γ(1−α)Âau(ωj)−γµ+

γ(γ+1)
2

(σ2
c+σ

2
g)
]
du

(p(ϕl − ϕr)× (A-81)

×V itd(zj)(Ytd(zj)(ωj))
)]

(A-82)

zj = min

[
nd, inf

i

(
p(ϕl − ϕr)V itd(i)(Ytd(i)(ωj)) > X(Ytd(i)(ωj)) · β

∗(td(i))
)]

Estimator (A-80) is downward biased, but provides a better approximation of the true
value according to the literature – see Glasserman (2004), Section 8.6. In order to better
mimic the behavior of a firm with a perpetual option to default, we use the coefficients
β∗(td(1)) of the initial date to represent the continuation value at any date.

• The price of corporate debt, (31), is estimated very similarly to (A-80), with qi replacing
Di
t and (1− ϕr − p((ϕl − ϕr))) replacing p((ϕl − ϕr)).

• The equity risk premium of firm i is computed using the standard definition in a diffusive
market context: (Instantaneous Stock Return Volatility Vector) · (Market Price of Risk
Vector). The equity return volatility is as in expression (A-36), where the sensitivities of
the equity price to the initial conditions of the state variables need to be estimated. Using
the previously estimated default rule β∗(td(i)), we apply the path-wise delta method
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illustrated, for instance, in Glasserman (2004) Section 7.2. The procedure is standard,
thus in the interest of space we do not report the details.18

18Available upon request.
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